
AS-SYSTEME GmbH

MERITS Profiler User Guide
Release 1.2.1

AS-SYSTEME GmbH

AS-SYSTEME GmbH iii

Licensing ..5
Software Requirements...5
Supported Oracle DBMS Releases ..5
Instrumentation and Accounting by Module and Action..6
Software Instrumentation ... 6
Application Instrumentation Entries in Oracle10g and Oracle11g ... 6
Module Name... 7
Action Name... 7
Client Identifier .. 7
Accounting by Module and Action .. 7
Guidelines for Instrumentation .. 8
Installation ...8
Setting MERITS Profiler Environment Variables ... 8
Windows.. 9
UNIX/Linux .. 9
Obtaining, Installing, and Using a License .. 9
Obtaining a License File.. 9
License Server Setup ... 10
Database User... 11
Password Encryption.. 11
Property File ... 11
MERITS Profiler Real-Time Mode ... 12
MERITS Profiler Concepts ..13
Modes of Operation ... 13
Offline Mode ... 13
Real-Time Mode.. 13
Resource Profile ... 14
Think Time... 14
Analyzing Trace Files..16
Offline Mode.. 16
Real-time Mode.. 16
Parameter Reference...19
awr_flush_level .. 19
cached_table_threshold_mb... 19
date_format .. 20
db_directory ... 20
db_encrypted_passwd .. 20
db_release... 20
db_user ... 21
encrypt.. 21
help... 21
interactive... 21
jdbc_url .. 22
lic_db_encrypted_passwd .. 22
lic_db_user ... 22
lic_listener_port ... 22
lic_listener_service... 23
log4j_config_url... 23
log4j_pattern_layout .. 23
logfile ... 23
max_bind_sections... 24

AS-SYSTEME GmbH iv

max_idle_time.. 24
max_statements .. 24
mod_act_max_statements .. 24
object_statistics .. 25
output_directory ... 25
properties.. 25
real_time... 25
report_name ... 26
session .. 26
sp_snap_level ... 26
sql_trace_file .. 27
sql_trace_level ... 27
statistics_level .. 28
think_time_threshold_ms... 28
trace_file_directory .. 28
use_awr .. 29
use_statspack.. 29
Profiler Report Structure and Contents ...29
Offline Mode.. 29
Report Date.. 29
Abbreviations .. 29
Trace File Header .. 29
Sessions ... 30
Response Time and Statistics .. 30
Statistics.. 31
Resource Profile ... 31
Database Call Statistics .. 32
Elapsed Time, CPU Usage, and Wait Time by Recursive Call Depth... 32
LOB Operation Statistics... 33
Results for Individual Statements.. 33
Top Statements ... 33
Statement Level Resource Profile and Database Call Statistics... 35
Row Prefetch Histogram .. 36
Recursive Descendants... 36
Execution Plan.. 36
Physical Reads by Database Object ... 37
Buffer Busy Waits .. 37
Captured Bind Variables .. 38
Results by Module and Action .. 38
Wait Event Histograms.. 39
Real-Time Mode .. 39
Active Workload Repository Snapshots.. 39
Hardware ... 40
Initialization Parameters .. 40
System Statistics .. 40
DBMS_STATS Default Values .. 41
Correlation with V$SQL and V$SQL_PLAN_STATISTICS_ALL... 41
Execution Plans Captured by Statspack .. 42
Statement Execution Captured by AWR... 42
Optimizer Environments ... 43
Buffer Cache Contents .. 44
Data Dictionary Correlation .. 44
MERITS Profiler Parameter Settings .. 45

AS-SYSTEME GmbH v

Logging...45
Releases and Features ...46
New Features of Release 0.9.11... 46
New Features of Release 1.0.0... 46
New Features of Release 1.1.0... 46
New Features of Release 1.2.0... 46
Bug Fixes in Release 1.2.0... 46
Upgrading ..47
Upgrading to Release 0.9.5 .. 47
Upgrading to Release 1.0.0 .. 47
Upgrading to Release 1.1.0 .. 47
Upgrading to Release 1.2.0 .. 47
Limitations ...47
Partitioning Option... 47
Multiple Sessions per Trace File.. 47
Parallel Execution .. 47
LOB Statsistics at Module and Action Level... 47
Additional Information...47

AS-SYSTEME GmbH 6

MERITS Profiler User Guide

Author: Norbert Debes, AS-SYSTEME GmbH
MERITS Profiler Version 1.2.1, March 2012

Licensing
The MERITS Profiler ships with an Oracle release 11.1.0.7 JDBC driver. Several components from the Apache Software Founda-
tion are also used by the Profiler. By using the MERITS Profiler, you agree to be bound to the terms set forth by the Oracle OTN
License Agreement as well as the Apache License. Both licenses are available in <MPROF_HOME>/contrib, where
MPROF_HOME is the Profiler installation directory. You may not use the MERITS Profiler if you don’t agree to one or both of the
license agreements.

Software Requirements
The Profiler is built with the latest Java technologies. It runs on any platform that supports Java and requires the following soft-
ware:

• Java 1.6 Standard Edition (SE) or newer run-time environment (JRE)
This Java release is available for download as JRE 6 at http://java.sun.com/javase/downloads/index.jsp. Use the command java -
version to find out what version of Java is installed on a system:
C:\> java -version
java version "1.6.0_12"
Java(TM) SE Runtime Environment (build 1.6.0_12-b04)
Java HotSpot(TM) Client VM (build 11.2-b01, mixed mode, sharing)

Any version matching the one above or higher is expected to work with the Profiler.

Supported Oracle DBMS Releases
The MERITS Profiler supports the following Oracle DBMS releases:
Oracle10g Release 1 (10.1)
Oracle10g Release 2 (10.2)
Oracle11g Release 1 (11.1)
Oracle11g Release 2 (11.2)

AS-SYSTEME GmbH 7

There are no plans to support Oracle9i and earlier releases. An older profiler called ESQLTRCPROF supports Oracle9i. It ships
with the book “Secret Oracle” (ISBN 978-1-4357-0551-7).

Instrumentation and Accounting by Module and Action
The MERITS Profiler supports accounting of response times and wait events per module and action. Module and action are identi-
fiers that may be used to inform the Oracle DBMS engine about tasks that a database client executes. Module and action names
appear in V$SESSION. If SQL trace is enabled they are also recorded in SQL trace files. The subsequent section on software
instrumentation provides background information on setting module and action names. A third identifier, the so-called client iden-
tifier is also discussed. The client-identifier is ideally suited for performance diagnosis and troubleshooting of database applications
that utilize connection pooling.

Software Instrumentation
The term software instrumentation refers to a programming technique, whereby a program is capable of producing an account of its
own execution time. The ORACLE DBMS is heavily instrumented (wait events, timers, counters), however this instrumentation
may be leveraged to a greater degree when a database client informs the DBMS of the tasks (module and action) it is performing.
This section discusses trace file entries that are related to application instrumentation. The minimum SQL trace level for enabling
entries discussed in this section is 1 (see Profiler parameter sql_trace_level on page 28).

Application Instrumentation Entries in Oracle10g and Oracle11g
Table 1 lists the instrumentation entries of Oracle10g and Oracle11g in alphabetical order along with the PL/SQL and OCI inter-
faces to generate them. Note that Oracle JDBC drivers have Java instrumentation interfaces which are more efficient than calling
PL/SQL from Java. At the lowest level, application instrumentation is achieved with the Oracle Call Interface (OCI) function
OCIAttrSet (see Oracle Call Interface Programmer's Guide).

When running code such as the following in SQL*Plus, all three types of instrumentation entries are written to a trace file.
C:> sqlplus ndebes/secret@ten_g.oradbpro.com
Connected.
SQL> BEGIN

dbms_application_info.set_module('mod', 'act');
dbms_session.set_identifier(sys_context('userenv','os_user') ||
'@' || sys_context('userenv','host') || ' (' ||
sys_context('userenv','ip_address') || ')');

END;
/
PL/SQL procedure successfully completed.
SQL> ALTER SESSION SET sql_trace=TRUE;
Session altered.

The resulting trace file contains lines such as these:
*** ACTION NAME:(act) 2007-08-31 18:02:26.578
*** MODULE NAME:(mod) 2007-08-31 18:02:26.578
*** SERVICE NAME:(orcl.oradbpro.com) 2007-08-31 18:02:26.578
*** CLIENT ID:(DBSERVER\ndebes@WORKGROUP\DBSERVER (192.168.10.1)) 2007-08-31 18:02:26.578
*** SESSION ID:(149.21) 2007-08-31 18:02:26.578

The value orcl.oradbpro.com of SERVICE NAME stems from the use of this string as the SERVICE_NAME in the definition of the
Net service name ten_g.oradbpro.com.
These are the kinds of trace file entries that the Oracle10g TRCSESS utility searches for when used to extract relevant sections
from one or more trace files. The sections that follow provide additional detail on the individual entries.

Table 1: PL/SQL and OCI Interfaces for Instrumentation Entries

Trace File Entry PL/SQL Interface OCIAttrSet Attribute

ACTION NAME DBMS_APPLICATION_INFO.SET_MODULE,
DBMS_APPLICATION_INFO.SET_ACTION

OCI_ATTR_ACTION

CLIENT ID DBMS_SESSION.SET_IDENTIFIER OCI_ATTR_CLIENT_IDENTIFIERa

a. DBMS_APPLICATION_INFO.SET_CLIENT_INFO and the OCI attribute OCI_ATTR_CLIENT_INFO set
V$SESSION.CLIENT_INFO. This setting is not emitted to trace files and cannot be used in conjunction with the
package DBMS_MONITOR.

MODULE NAME DBMS_APPLICATION_INFO.SET_MODULE OCI_ATTR_MODULE

AS-SYSTEME GmbH 8

Module Name
The module name is intended to convey the name of an application or larger module to the DBMS. The default setting is NULL.
SQL*Plus and Perl DBI automatically set a module name. The example below is from a SQL*Plus session:
*** MODULE NAME:(SQL*Plus) 2007-02-06 15:53:20.844

Action Name
An action name represents a smaller unit of code or a subroutine. A module might call several subroutines, where each subroutine
sets a different action name. The default setting NULL results in a zero length action name:
*** ACTION NAME:() 2007-02-06 15:53:20.844

Client Identifier
Performance problems or hanging issues in three tier environments, where the application uses a database connection pool main-
tained by an intermediate application server layer, can be extremely cumbersome to track down. Due to the connection pool in the
middle tier, performance analysts looking at V$ views or extended SQL trace files cannot form an association between an applica-
tion user reporting a slow database and the database session or server process within the ORACLE instance serving a particular
user. There is no way to find out which SQL statements are run on behalf of the complaining end user. Unless the application is
properly instrumented, which is something that has eluded me in my career as a DBA.
The client identifier is the answer to this dilemma. The package DBMS_SESSION provides a means for an application to communi-
cate an identifier that uniquely designates an application user to the DBMS. This identifier becomes the value of the column
V$SESSION.CLIENT_IDENTIFIER. If SQL trace is enabled, this same identifier is also embedded in the SQL trace file. The for-
mat is:
*** CLIENT ID:(client_identifier) YYYY-MM-DD HH24:MI:SS.FF3

Client_identifier is the client identifier set by calling the procedure DBMS_SESSION.SET_IDENTIFIER from the application code.
To extract trace information for a certain client identifier from one or more SQL trace files, trcsess clientid=client_identifier
can be used. The line below shows an actual entry from a trace file. The client identifier used was ND. The entry was written on
February 6th, 2007.
*** CLIENT ID:(ND) 2007-02-06 15:53:20.844

The maximum length of a client identifier is 64 bytes. Strings exceeding this length are silently truncated. When instrumenting
applications with DBMS_SESSION, consider that the procedure DBMS_SESSION.CLEAR_IDENTIFIER does not write a CLIENT ID
entry into the trace file, leaving the client identifier in effect until it is changed with DBMS_SESSION.SET_IDENTIFIER. When
connection pooling is used, this may result in trace files where sections pertaining to different client identifiers are not delineated.
The solution consists of setting an empty client identifier by passing NULL to the packaged procedure
DBMS_SESSION.SET_IDENTIFIER instead of calling the procedure DBMS_SESSION.CLEAR_IDENTIFIER.

Accounting by Module and Action
An Oracle SQL trace file contains no information whatsoever on the response time of a module. All the information that the MER-
ITS Profiler is able to distill from SQL trace files is inferred and requires extensive bookkeeping using complex hierarchical data
structures. When a module and action are entered and left is derived from the instrumentation entries. A zero-length identifier is
considered as an invalid module name. Hence no accounting per module and action occurs unless a module name is set. A zero-
length identifier is considered as a valid action name and will show up as action name “NULL” in Profiler reports. If the profiler
were to encounter the following two lines in a SQL trace file:
*** MODULE NAME:(SQL*Plus) 2007-02-06 15:53:20.844
*** ACTION NAME:() 2007-02-06 15:53:20.844

then the report would include a section on module and action “SQL*Plus.NULL”.
Module and action combinations that do not bracket any database calls are ignored. Since module and action are set on different
lines the profiler evaluates each type of instrumentation entry separately.
Invocations of a subroutine may occur at different call depths represented by the field “dep” in PARSE, EXEC, and FETCH data-
base calls. If a database client calls a subroutine directly, then it is invoked at dep=0. If the same subroutine is invoked from within
a DML trigger on a table then the invocation will typically happen at dep=1.
Certain statistics of a database call are rolled up on higher call depth levels. They are CPU usage (c), elapsed time (e), consistent
reads (cr), current blocks accessed (cu), and physical reads (p). Since those values are already rolled up by the DBMS engine they
must be taken from the highest call depth within a module. On the contrary, the remaining statistics on the number of rows pro-
cessed (r) and cursor misses (mis) are not rolled up by the DBMS engine. The Profiler stores them per call depth level and when a
module is left it aggregates them from the highest to the lowest dep level. Of course it is not known ahead of time what the lowest
call depth within a module will be. Keeping this algorithm in mind it is crucial that instrumentation is coded correctly. A task must
begin and end at the same call depth level. Let’s assume that a task is not closed upon return from a subroutine but instead within
the caller of the subroutine at a call depth that is one less than the one of the subroutine. The Profiler must assume that the resources
consumed by any recursive statements at higher call depths are rolled up into one or more statements at lower call depths. If the end

AS-SYSTEME GmbH 9

task instruction is missing in a subroutine, the next statement after the subroutine call will happen at a higher dep level, but it will
not account for any resources consumed within the subroutine, since it was started after the subroutine call was already complete.
Hence the resource consumption by module and action cannot correctly state the resource consumption of the subroutine.

Guidelines for Instrumentation
As discussed in the previous section a stack based approach to instrumentation must be taken. For any programming language, a
library should be available that provides the begin task and end task routines and implements a stack of module and action names.
Essentially a begin task call is a push on a stack and an end task call is a pop off a stack. Currently such a library is only available
for PL/SQL. The library for PL/SQL is called “Instrumentation Library for Oracle” (ILO) and the source code is available at no
charge on Sourceforge (http://sourceforge.net/projects/ilo). ILO can be used from any programming language that supports calling
PL/SQL packages.

Installation
The MERITS Profiler is distributed as a downloadable Zip archive. The software is ready to run once the Zip archive has been
unpacked. Administrator privilege on Windows or root privilege on UNIX is not necessary to deploy the software. Simply choose
a directory for unpacking the Zip archive and unpack it using unzip or a graphical tool such as the Windows Explorer. Below is a
sample contents list of a Profiler distribution.
Archive: mprof-0.9.11.zip
 Length Date Time Name
--------- ---------- ----- ----
 0 05/15/2010 16:15 mprof/
 0 12/08/2009 18:57 mprof/bin/
 1922 12/04/2009 18:13 mprof/bin/mprof
 2152 12/08/2009 18:30 mprof/bin/mprof.bat
 0 03/27/2011 17:28 mprof/conf/
 1266 03/27/2011 17:28 mprof/conf/css.properties
 824 03/27/2011 17:28 mprof/conf/oacdty_type_name_map.properties
 857 03/27/2011 17:28 mprof/conf/oct_map.properties
 2107 03/27/2011 17:28 mprof/conf/profiler.properties
 1642 03/27/2011 17:28 mprof/conf/profiler_log4j.properties
 5868 03/27/2011 17:28 mprof/conf/profiler_props_desc.properties
 20221 03/27/2011 17:28 mprof/conf/rt_queries.properties
 0 12/04/2009 18:15 mprof/contrib/
 11531 07/04/2009 00:31 mprof/contrib/apache_license.txt
 76539 08/13/2009 21:55 mprof/contrib/otn-distribution-license.html
 0 03/27/2011 15:48 mprof/doc/
 410 03/27/2011 14:15 mprof/doc/MERITS-Profiler-Book.log
 152983 08/18/2009 22:48 mprof/doc/MERITS-Profiler-Introduction-and-Features.pdf
 427458 03/27/2011 15:48 mprof/doc/MERITS-Profiler-User-Guide.pdf
 0 12/04/2009 18:15 mprof/lib/
 829799 07/05/2009 19:03 mprof/lib/contrib.jar
 324530 03/27/2011 17:29 mprof/lib/mprof.jar
 1890499 08/13/2009 21:53 mprof/lib/ojdbc5.jar
 0 12/02/2009 19:09 mprof/license/
 0 05/15/2010 16:14 mprof/samples/
 0 03/08/2011 22:39 mprof/sql/
 605 03/08/2011 22:30 mprof/sql/create_user.sql
 604 03/08/2011 22:39 mprof/sql/db_directory.sql
 494 07/04/2009 17:53 mprof/sql/license_server_info.sql
 1057 07/04/2009 17:53 mprof/sql/mprof_lic_db_user.sql
 2911 03/08/2011 22:15 mprof/sql/profiler_role.sql
 738 03/08/2011 22:30 mprof/sql/settings.sql
 1381 03/08/2011 22:30 mprof/sql/set_statistics_level.sql
--------- -------
 3758398 33 files

After unpacking the software, certain environment variables need to be set in order to use the Profiler. Please refer to the subse-
quent section pertaining to your operating system.

Setting MERITS Profiler Environment Variables
The MERITS Profiler uses four environment variables. They are:

• MPROF_HOME
• MPROF_JAVA_HOME

AS-SYSTEME GmbH 10

• MPROF_JDBC_DRIVER
• MPROF_PROPERTIES

Among these environment variables, MPROF_HOME and MPROF_JAVA_HOME are mandatory. MPROF_JDBC_DRIVER and
MPROF_PROPERTIES are optional.
MPROF_HOME is the Profiler installation directory, i.e. the directory where the Zip file containing the software was unpacked.
The last component of the path name must be “mprof”. MPROF_JAVA_HOME is the installation directory of a Java 1.6 or newer
run-time environment. The Profiler uses <MPROF_JAVA_HOME>/bin/java (or equivalent) to launch a Java virtual machine.
MPROF_JDBC_DRIVER may be set to use a non-default JDBC driver. If this environment variable is not set, the Profiler uses the
JDBC driver in mprof/lib/ojdbc5.jar. MPROF_PROPERTIES is discussed in detail in section Parameter Reference on
page 20.

Windows
The profiler installation directory is set using the variable MPROF_HOME. MPROF_HOME needs to be set to the directory where
the software was unpacked with "\mprof" appended. For example, if you unpacked the software in "C:\Program Files" then set
MPROF_HOME as below:
set MPROF_HOME=C:\Program Files\mprof
set MPROF_JAVA_HOME=C:\Program Files\java\jre6

Next, add the full path of the directory where mprof.bat resides to the PATH variable. For example:
C:\>set PATH=%PATH%;"C:\Program Files\mprof\bin"

You may now run the Profiler in offline mode by typing mprof at a command prompt:
C:\> mprof help=true

To persist the change of the PATH variable and to save the two new environment variable settings, edit them at user or system level
by navigating to CONTROL PANEL > SYSTEM > ADVANCED > ENVIRONMENT VARIABLES.
If you forget to set one of the mandatory environment variables, the script mprof.bat will report an error:
C:\home\ndebes\it\java\esqltrcprof\trunk> mprof
Error: required environment variable MPROF_HOME is not set.

UNIX/Linux
This section assumes that you are using the Korn or Bash shell. MPROF_HOME needs to be set to the directory where the software
was unpacked with "/mprof" appended. In the example below, the software was unpacked in the directory /home/ndebes.
$ export MPROF_HOME=/home/ndebes/mprof
$ export MPROF_JAVA_HOME=/home/ndebes/jre1.6.0_16
$ export PATH=$PATH:$MPROF_HOME/bin
$ mprof help=true

Add the environment variable settings to your shell’s login script (e.g. .profile), such that the variables will be set on subsequent
logins.

Obtaining, Installing, and Using a License
The complimentary version of the MERITS Profiler has a limitation on the file size of SQL trace files that it processes. The maxi-
mum file size is 1 MB (210 bytes). The licensing model incorporates the maximum trace file size as one aspect that affects licensing
costs. The license fee increases as the maximum SQL trace file size increases.
Real-time mode and other advanced MERITS Profiler features such as aggregation of non-sharable SQL statements that lack bind
variables are also only available with a valid license file. You need to designate an Oracle instance within your network as a license
server. The Profiler connects to an Oracle instance on the license server to verify the database ID and platform of your license. This
database is called the license database. If license verification completes successfully, the Profiler sets the maximum trace file size
encoded in the license file and activates other licensed features such as real-time mode.

Obtaining a License File
The license is bound to certain characteristics of a license server. Each time the Profiler is started with a license file present, it con-
nects very briefly to the license server instance to verify that the characteristics stored in the license file indeed match those of the
license server. The Profiler exits with an error message if the verification fails. Choose a production Oracle DBMS instance with a
static IP address that will not be decommissioned in the near future as the license server. You will not be able to run the Profiler in
real-time mode should the license server be decommissioned or otherwise become unavailable. In such a case you will need to con-
tact the vendor to obtain a new license file.
The verification requires access to the V$ view V$DATABASE. A script is provided for creating a database user with the minimum
privileges to accomplish this task.
To obtain a license file, three pieces of information must be provided to the vendor:

1. The IP address of a listener, that the license server instance registers with.

AS-SYSTEME GmbH 11

2. The database ID of the database mounted by the license server instance.
3. The name of the operating system platform.

Item one is determined by looking up the value of the HOST field in your listener configuration. If the value is a host name, then
translate it to an IP address using nslookup or a hosts file1. In the example below, the listener uses the IP address assigned to the
host name “dbserver”.
listener=
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST =dbserver)(PORT = 1521))
)

Translating the host name to an IP address yields item 1 for the license file.
C:\> nslookup 192.168.1.144
Server: your.dns.server
Address: 192.168.1.1

Name: dbserver
Address: 192.168.1.144

Here, the IP address of the listener is 192.168.1.144.
Items two and three are obtained by querying V$DATABASE. Please use the script license_server_info.sql in <MPROF_HOME>/
sql to get the information. The script has the following contents:
spool license_server_info.txt
SELECT dbid || ', '''||platform_name||'''' AS license_server_info
FROM sys.v_$database;
spool off

Connect to the license server instance as a database user with access to V$DATABASE and run the script as shown below:
C:\> sqlplus system
SQL*Plus: Release 10.2.0.3.0 - Production on Sat Jul 4 08:27:31 2009
Copyright (c) 1982, 2006, Oracle. All Rights Reserved.
Enter password:
Connected to:
Oracle Database 10g Enterprise Edition Release 10.2.0.3.0 - Production
SQL> @license_server_info
LICENSE_SERVER_INFO
--
2870266532, 'Microsoft Windows IA (32-bit)'

This creates the spool file license_server_info.txt. To request a license file, send the contents of this file along with the listener IP
address to the vendor.

License Server Setup
A valid license file that matches an available Oracle DBMS instance in your network is required to complete the steps outlined in
this section. When you receive your license file, save it in the directory <MPROF_HOME>/license within the Profiler installation.
A license file is a plain text file named license.lic. A sample license file is reproduced below:
lic_listener_ip=192.168.1.144
lic_db_id=2870266532
lic_db_platform=Microsoft Windows IA (32-bit)
licensee=customer
license_version=1
licensor=ORADBPRO
profiler_version=0.9.0
Expiration=2009-7-19
Signature=302D02140156AE8DCC479222B8691746B148F3831A6F32B50215008DA52495FD43BE5ED09ABA94A6419568
8940D62F

The license file contains the three pieces of information that characterize the license server (IP address, database ID, platform), the
name of the licensee, an expiration date, and some further information. Setting up real-time mode consists of the following three
steps:

1. Create a new database user or designate an existing one for license verification
2. Encrypt the password of the chosen database user
3. Save the database user name and encrypted password in a property file

1. The UNIX hosts file is /etc/hosts. Windows uses %SystemRoot%\system32\drivers\etc\hosts, where the environment variable Sys-
temRoot usually has the value C:\WINDOWS.

AS-SYSTEME GmbH 12

Database User
It is recommended to create a new database user with the minimum set of privileges for license verification. If you prefer using an
existing database user, make sure that it has the privileges required to query the V$ view V$DATABASE. The script
<MPROF_HOME>/mprof_lic_db_user.sql is provided to create a new database user. This script is reproduced below:
-- recommended database user name, may be changed if desired
define lic_db_user=mprof_license
create user &lic_db_user identified externally account lock;
GRANT CREATE SESSION TO &lic_db_user;
GRANT SELECT ON sys.v_$database TO &lic_db_user;
-- use of the password commmand ensures that the password is neither visible on screen
-- nor transmitted in clear text over a network
password &lic_db_user
alter user &lic_db_user account unlock;

The suggested name of the new database user is “mprof_license”. Change the define statement at the beginning of the script if you
prefer a different user name. Due to the GRANT on SYS.V_$DATABASE the script needs to be run with SYSDBA privileges.

Password Encryption
For convenient use of the Profiler, the encrypted password of the license database user is saved in a user-specific property file. Run
the Profiler with the parameter encrypt set to true as indicated below:
C:\> mprof encrypt=true

The Profiler then asks for a password to encrypt. The password is not echoed to the display and needs to be typed twice for verifi-
cation.
Enter password to encrypt:
Re-enter password:

As a result, the Profiler prints the encrypted password:
Encrypted password is: Kjme6jHsB4E=

The final step consists of saving the encrypted password and the license database user name in a property file. This is described in
the next section.

Property File
A Java property file is a plain text file that contains key/value pairs. For your convenience, the Profiler accepts all parameters either
as command line parameters or as a key/value pair in a property file. To use real-time mode, both the license database user name
and encrypted password must be set. If you were to use the suggested user name and the encrypted password generated above, then
the property file would look as below:
lic_db_user=mprof_license
lic_db_encrypted_passwd=Kjme6jHsB4E=

The Profiler uses the JDBC Thin driver to connect to the license server instance and to verify the license file. A JDBC Thin URL
has the following format:
jdbc:oracle:thin:@<host/IP address>:<port>/<instance service name>

The listener IP address is taken from the license file. The port number is assigned with the parameter lic_listener_port. This param-
eter has a default value of 1521. Thus, you only need to set it if you use a different port. The third component of the JDBC URL is
an instance service name. Pick one of the service names the license server instance has registered with the license server listener.
The command lsnrctl services [listener_name] displays all services registered with a listener. Then set the service name with the
parameter lic_listener_service in the property file. For example:
lic_listener_service=orcl.world

You are now ready to test the three parameter settings in your property file. Make sure that you have copied the file license.lic to
<MPROF_HOME>/license. Assuming that you have already used the Profiler in offline mode, the command script for starting the
Profiler has already been customized for your environment and it will be able to locate required jar files as well as the license file
by searching the Java class path. To test your setup, start the Profiler by passing the name of your property file with the parameter
“properties”. Let’s assume that your property file is called myprops.properties. You would then start the Profiler as below:
C:\> mprof properties=myprops.properties

The Profiler will then assemble a JDBC URL from the parameters in the property file (or default parameter values) and the licens-
ing information. If the setup is correct, the Profiler will respond as shown below:
INFO profiler: Trying to verify license file C:\program files\mprof\license.lic
INFO profiler: License file integrity verified: true; days left: 365
INFO profiler: License server verified: true: '2870266532'=='2870266532' and 'Microsoft Windows
IA (32-bit)'=='Microsoft Windows IA (32-bit)'

AS-SYSTEME GmbH 13

INFO profiler: Real-time mode: false
ERROR profiler: No SQL trace file specified with parameter sql_trace_file (real-time mode:
false).

As is evident from the output above, the Profiler verified the license. Since no further parameters were supplied it terminated with
an error after the license verification.

MERITS Profiler Real-Time Mode
Real-time mode requires a database user with privileges to query certain DBA_* views, V$ views, and a few database objects in the
schema PERFSTAT.
You have two options:
1. Use a database user that has the role DBA.
2. Create a role that has the minimum set of privileges required by real-time mode.
Option 2 is recommended for security-sensitive environments, since it guarantees that the database user account for the Profiler
does not have access to sensitive tables or views.
The default name of the role for option 2 is MPROF_ROLE. It may be changed by editing the script profiler_role.sql.
In order to set up a database for the least privilege approach, run the script profiler_role.sql as SYS. This script is located in
<MPROF_HOME>/sql.
SQL> @sql/profiler_role.sql

The output from the script profiler_role.sql is not shown. Once the role MPROF_ROLE has been created and privileges assigned to
it, you may create a database user and assign it the role.
SQL> CREATE USER mprof_user IDENTIFIED EXTERNALLY ACCOUNT LOCK;
User created.
SQL> GRANT CREATE SESSION TO mprof_user;
Grant succeeded.
SQL> GRANT mprof_role TO mprof_user;
Grant succeeded.

To finish, assign a password and unlock the new account:
SQL> PASSWORD mprof_user
Changing password for mprof_user
New password:
Retype new password:
Password changed
SQL> ALTER USER mprof_user ACCOUNT UNLOCK;
User altered.

AS-SYSTEME GmbH 14

MERITS Profiler Concepts
The next sections address some important concepts that are relevant to performance diagnosis based on extended SQL trace files
and to the MERITS Profiler in particular.
Figure 1 shows the six main building blocks of the MERITS Profiler. They are:

1. A user interface—this can be a graphical user interface or a command line user interface.
2. A follow mode trace file reader—this component has the capability of reading a growing trace file in real-time while an active

traced process still writes to the file in append mode.
3. A parser that understands the extended SQL trace file format.
4. An accounting component, that keeps track of the information the parser extracted from a trace file.
5. A correlation component that retrieves performance diagnostic data that is related to the data extracted by the parser from the

target Oracle instance.
6. A renderer component that invokes a final correlation step when the Profiler stops reading from the trace file and generates an

HTML or text report on the information held by the accounting component.

Modes of Operation
The MERITS Profiler operates in two modes:

• offline mode
• real-time mode

Offline Mode
Offline mode is the mode of operation that you may be familiar with from other SQL trace profilers such as Oracle’s TKPROF. A
trace file is created using the SQL trace facility and some time after the trace file has been closed a profiler reads the trace file for
analysis. This mode of operation does not require a license for the MERITS Profiler, but is severely limited in its diagnostic expres-
siveness. It is usually impossible to solve a performance problem by solely analyzing a SQL trace file. Much more information like
initialization parameters, object statistics or results from querying V$ views may be needed. I call this lack of information from no
diagnostic data but a SQL trace file the “diagnostic gap”. Offline-mode results in an overly large diagnostic gap.

Real-Time Mode
In real-time mode, the MERITS Profiler reads, parses, and correlates a SQL trace in real-time, i.e. as soon as new data is appended
to a SQL trace file, the Profiler reads it, parses it, and correlates it with V$ views or other relevant sources of diagnostic data avail-
able by accessing an Oracle DBMS instance.
Figure 2 illustrates the Profiler’s real-time mode. An Oracle DBMS instance (1) is the target environment where a performance
diagnosis occurs. A DBMS instance has a database (2) and the files comprising the database open. A traced process (3) writes the
SQL and/or PL/SQL statements it executes to a SQL trace file. The traced process serves a database client (not shown). Tracing can

Figure 1: Components of the MERITS Profiler

AS-SYSTEME GmbH 15

be enabled in a variety of ways that are well known among Oracle database administrators (e.g. DBMS_SYSTEM,
DBMS_SUPPORT). The MERITS Profiler can enable extended SQL trace for a session with the parameter “session” using the
package DBMS_MONITOR. SQL trace files are always written to a file system (4). The MERITS Profiler supports two ways of
reading an input SQL trace file (5):

1. as a file system file (8a)
2. via the database session to the target instance using a BFILE (8b)

Option 1) requires that the MERITS Profiler (6) runs on the same system as the traced process or that a network file system of some
sort allows file system access to the trace file in cases where the Profiler does not run on the system where the traced process
resides.
Option 2) requires a database directory object that points to the directory where the trace file resides.
In real-time mode, the MERITS Profiler (6) connects to the target instance (1) for the purpose of correlating data in a SQL trace file
with data available from the Oracle DBMS instance (e.g. V$ views). Correlation queries the Profiler runs are processed by a server
process (7) of the target instance.
Put simply, the MERITS Profiler (6) reads the SQL trace file (5), correlates it with information from the DBMS instance (1) and
renders a performance diagnostic report.

Resource Profile
A resource profile is an apportionment of response time often presented in tabular form. Each row of a tabular resource profile con-
tains a single contributor to response time, e.g. CPU time consumption or a wait event. Ideally, the following columns are included:
contributor name, percentage of response time, contribution to response time in seconds, number of times the contributor was
called upon, and average time consumed by a call upon the contributor. The table should be sorted by percentage of contribution to
response time in descending order.
In a MERITS Profiler report, resource profiles tell the performance analyst where the response time went. There is a resource pro-
file that covers an entire trace file at the beginning of a report. This is followed by individual resource profiles for each distinct SQL
or PL/SQL statement.

Think Time
If a “SQL*Net message from client” wait event exceeds the think time threshold, the excess portion of the wait time is accounted
for with the pseudo wait event think time in resource profiles. The term pseudo wait event is used, since this is a wait event name
introduced by the Profiler. The Oracle DBMS has no knowledge of think time and does not have a wait event called “think time”
The portion of “SQL*Net message from client” that equals the think time threshold, is reported under the original event name. As a
consequence of introducing the pseudo wait event “think time”, two wait events are generated for “SQL*Net message from client”
waits that exceed the threshold. The resulting higher count of wait events has an effect on the average duration of the wait events

Figure 2: Schematic Overview of the MERITS Profiler’s Real-Time Mode

AS-SYSTEME GmbH 16

related to think time and also on the average duration of all contributors to response time. The total number of round-trips between
client and server equals the number of times a “SQL*Net message from client” wait has been recorded.
The rationale behind the concept of think time is that a database client that does not make the next request on the database server in
less than think_time_threshold_ms is engaging in non database-related work. Think time cannot be reduced by optimizing an Ora-
cle database or instance. The contribution of think time to response time is important, since it limits the maximum speedup from
optimization. Hence think time is reported as a separate contributor to response time. Think time is also crucial as proof that data-
base access is not the cause of a performance problem.

AS-SYSTEME GmbH 17

Analyzing Trace Files
The next two sections contain examples of using the Profiler in offline and real-time modes.

Offline Mode
In offline mode, the Profiler does not connect to the target DBMS instance for correlating a SQL trace file with V$ views and other
information available from the target Oracle instance. Furthermore the trace file must be read as a file system file. A license file is
not required. Certain feature are disabled without a license. All required parameters may be given on the command line, however it
is more convenient to create a file for setting parameters and to refer to the properties file with the environment variable
MPROF_PROPERTIES. On Windows this can be done with the following command:
C:\> set MPROF_PROPERTIES=offline.properties

You might start by setting just the directory where the trace files reside and turning off interactive mode in a properties file. Note
that you need to escape the backslashes in Windows path names with another backslash as shown below:
C:\> type offline.properties
trace_file_directory=c:\\oracle\\product\\admin\\ten\\udump
interactive=false

If you do not have a license file, you’re ready to run the Profiler:
C:\> mprof sql_trace_file=ten_ora_2984.trc
INFO profiler: License file 'license.lic' not found in
CLASSPATH=C:\Oracle\product\db10.2\jdbc\lib\ojdbc14.jar;C:\program files\mprof\lib\contrib.
jar;C:\program files\mprof\license;..
Real-time mode and aggregation of non-reusable statements by MD5 hash value are disabled.
INFO profiler: Real-time mode: false
INFO profiler: Starting thread 8 for input file 'ten_ora_2984.trc' in file system directory
'c:\oracle\product\admin\ten\udump'
INFO parser: Stop attempting to read trace file since total_sleep_time=0 >= max_idle_time=0 and
interactive_mode=false
INFO profiler: Finished generating report '.\report.html'.

If you do have a license file, you need to make sure that the license file is in the CLASSPATH. The recommended location for the
license file license.lic is <MPROF_HOME>/license, since this directory is added to the class path in the wrapper script that starts
the Profiler (mprof.bat on Windows). Aggregation of non-sharable SQL statements with varying literals instead of bind variables
is enabled in offline mode, if a license file is present. The lic_* parameters must be specified, such that the Profiler can verify the
license server. A sample properties file for that purpose is shown below:
C:\> type offline.properties
trace_file_directory=c:\\programme\\oracle\\product\\admin\\ten\\udump
interactive=false
lic_listener_service=ten.oradbpro.com
lic_db_user=mprof_license
lic_db_encrypted_passwd=H8Q/1pIXlb+0NCOHyDqlKQ==

Assuming that the environment variable MPROF_PROPERTIES is not set, you would call the profiler as below:
C:\> mprof properties=offline.properties sql_trace_file=ten_ora_2984.trc
INFO profiler: Trying to verify license file C:\program files\mprof\license\license.lic
INFO profiler: License file integrity verified: true; days left: 3670
INFO profiler: License server verified: true: '2870266532'=='2870266532' and 'Microsoft Windows
IA (32-bit)'=='Microsoft Windows IA (32-bit)'
INFO profiler: Real-time mode: false
INFO profiler: Starting thread 8 for input file 'ten_ora_2984.trc' in file system directory
'c:\oracle\product\admin\ten\udump'
INFO parser: Stop attempting to read trace file since total_sleep_time=0 >= max_idle_time=0 and
interactive_mode=false
INFO profiler: Finished generating report '.\report.html'.

Real-time Mode
This section contains a very small example of running the MERITS Profiler in real-time mode. The case study shows how to use
the MERITS Profiler to trace a session based on its SID and SERIAL# and how to generate a report. First of all you should create a
properties file for setting all the properties required in real-time mode. An example properties file user_props.properties that
contains all the properties for the target as well as the license server Oracle DBMS instance is reproduced below. Run the Profiler
with the parameter encrypt=true to generate encrypted passwords for the license server and target databases. Remember that the
encryption is valid only for the operating system user that generated it. You cannot use an encrypted password that was created by
another operating system user. The parameters jdbc_url and db_encrypted_passwd both refer to the target instance and data-

AS-SYSTEME GmbH 18

base. All the lic_* parameters refer to the license server database. Since lic_listener_port is not set, the default of 1521 is
used.
jdbc_url=jdbc:oracle:thin:@localhost:1521/TEN.oradbpro.com
db_encrypted_passwd=Kjme6jHsB4E=
lic_listener_service=ten.oradbpro.com
lic_db_user=mprof_license
lic_db_encrypted_passwd=H8Q/1pIXlb+0NCOHyDqlKQ==

Once you have a property file like the one above, all you need to do to run the Profiler in real-time mode is to pass the parameter
db_user on the command line.
Next, start a database client (SQL*Plus in this case) and connect to the target Oracle DBMS instance, then get the SID and
SERIAL# for the session from V$SESSION.
C:\> sqlplus example
SQL*Plus: Release 10.2.0.4.0 - Production on Wed Aug 5 16:52:13 2009
Copyright (c) 1982, 2006, Oracle. All Rights Reserved.
Enter password:
Connected to:
Oracle Database 10g Enterprise Edition Release 10.2.0.4.0 - Production
SQL> select sid,serial# from v$session where sid=userenv('sid');
 SID SERIAL#
---------- ----------
 47 203

Start the MERITS Profiler and use SID.SERIAL# from the above query result as the value for the parameter session. This param-
eter tells the profiler to enable SQL trace on the specified session. The file user_props.properties contains the parameters
required for connecting to the target database.
C:\home\ndebes\it\java\esqltrcprof\trunk>mprof properties=user_props.properties
db_user=mprof_user session=47.203 report_name=ins_customer.html
INFO profiler: Trying to verify license file
C:\home\ndebes\it\java\esqltrcprof\trunk\license\license.lic
INFO profiler: License file integrity verified: true; days left: 3670
INFO profiler: License server verified: true: '2870266532'=='2870266532' and 'Microsoft Windows
IA (32-bit)'=='Microsoft Windows IA (32-bit)'
INFO profiler: Real-time mode: true
INFO profiler: Automatically determined trace file name 'ten_ora_2984.trc'
INFO profiler: Automatically determined database directory name 'USER_DUMP_DEST' for DBMS
instance parameter user_dump_dest='C:\PROGRAMME\ORACLE\PRODUCT\ADMIN\TEN\UDUMP'
INFO profiler: Starting thread 8 for input file 'ten_ora_2984.trc' in database directory
'USER_DUMP_DEST'
Choose:
1. Generate Report and Exit
2. Status
3. Abort
4. Disable SQL Trace
WARN parser: Trace file ten_ora_2984.trc could not be read (java.io.IOException:
java.sql.SQLException: ORA-22288: Datei- oder LOB-Vorgang GETLENGTH nicht erfolgreich
Das System kann die angegebene Datei nicht finden.
; error code=22288); retrying ...
WARN parser: Trace file ten_ora_2984.trc could not be read (java.io.IOException:
java.sql.SQLException: ORA-22288: Datei- oder LOB-Vorgang GETLENGTH nicht erfolgreich
Das System kann die angegebene Datei nicht finden.
; error code=22288); retrying ...

Next, execute an INSERT statement, a COMMIT, and a SELECT:
SQL> variable empno number
SQL> INSERT INTO EMP (ename,job) VALUES ('Debes', 'DBA') RETURNING empno INTO :empno;
1 row created.
SQL> COMMIT;
Commit complete.
SQL> SELECT * FROM emp WHERE empno=:empno;
 EMPNO ENAME JOB MGR HIREDATE SAL
---------- ---------- --------- ---------- ------------------- ----------
 COMM DEPTNO
---------- ----------
 9204 Debes DBA

AS-SYSTEME GmbH 19

The trace file gets created and the MERITS Profiler's follow mode reader automatically starts reading the trace file.
WARN parser: Warning: Execution plan (STAT entry) for cursor 4 without prior PARSING IN CURSOR #4
is ignored (line 25)
WARN parser: Warning: Execution plan (STAT entry) for cursor 4 without prior PARSING IN CURSOR #4
is ignored (line 26)
WARN parser: Warning: Execution plan (STAT entry) for cursor 4 without prior PARSING IN CURSOR #4
is ignored (line 27)
INFO parser: EOF reading trace file - sleeping for 1 s ...
INFO parser: EOF reading trace file - sleeping for 2 s ...
INFO parser: EOF reading trace file - sleeping for 4 s ...
INFO parser: EOF reading trace file - sleeping for 8 s ...
INFO parser: EOF reading trace file - sleeping for 1 s ...
INFO parser: EOF reading trace file - sleeping for 2 s ...
INFO parser: EOF reading trace file - sleeping for 4 s ...

Choose menu item 2 for displaying the Profiler’s program status:
2
Thread 8: state: TIMED_WAITING; parsing trace file; 13310 bytes read from ten_ora_2984.trc (EOF
encountered 2 time(s))
Choose:
1. Generate Report and Exit
2. Status
3. Abort
4. Disable SQL Trace

As you can tell from the screen output above, the Profiler had reached an end of file condition on the input trace file twice. Finally
choose menu item 1 for generating the report and to quit the MERITS Profiler.
1
INFO rt: Reporting object statistics for TABLE NDEBES.EMP
INFO profiler: Finished generating report '.\ins_customer.html'.

At this point a report in HTML format has been generated.

AS-SYSTEME GmbH 20

Parameter Reference
This section contains detailed descriptions of the MERITS Profiler’s parameters in alphabetical order. All the parameters in this
section may be passed on the command line. Alternatively all parameters except user_properties may be specified using a Java
properties file. There are two options for specifying a full or relative path to a properties file with user-specific settings:

• The command line parameter user_properties, which is not supported inside a property file.
• The environment variable MPROF_PROPERTIES.

Using MPROF_PROPERTIES is more convenient than passing user_properties=<path> each time the Profiler is run. An example
for Windows follows. The environment variable MPROF_PROPERTIES may be set on the command line as below:
C:\> set MPROF_PROPERTIES=C:\user_props.properties

Alternatively, MPROF_PROPERTIES may be set permanently as a user environment variable via Control Panel > System >
Advanced > Environment Variables. Assuming that the file C:\user_props.properties contains a valid trace file directory path using
the parameter trace_file_directory, merely the parameter sql_trace_file needs to be passed on the command line:
C:\> mprof.bat sql_trace_file=ten_ora_8144_spreport.trc

When called in this way without setting any further parameters, the Profiler writes a log file called profiler.log and generates an
HTML report in a file called profiler.html.

awr_flush_level

The parameter awr_flush_level controls the setting of FLUSH_LEVEL in calls of the Active Workload Repository (AWR) package
function DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT (see Oracle Packages and Types Reference manual). The
meanings of the permissible settings are:

• OFF: no AWR snapshot is taken
• TYPICAL: FLUSH_LEVEL TYPICAL is used
• ALL: FLUSH_LEVEL ALL is used

If awr_flush_level has a value other than OFF, the MERITS Profiler creates an AWR snapshot when it connects to the target DBMS
instance and another AWR snapshot when the user requests a report. The Profiler automatically creates an AWR and ASH report
for the interval between the two snapshots. The parameter awr_flush_level is ignored when the Profiler is running in offline mode,
i.e. when the parameter db_user is not set. Note that use of AWR and ASH requires a license for the Diagnostics Pack from Oracle
Corporation or one if its subsidiaries.

cached_table_threshold_mb

The parameter cached_table_threshold_mb specifies the threshold for a segment's size (in MB) beyond which it is included in the
report section on buffer cache contents. A value of -1 instructs the Profiler to omit the report section entitled “Buffer Cache Con-
tents”.

Attribute Description

Data type string

Default value OFF

Range of values OFF, TYPICAL, ALL

Attribute Description

Data type integer

Default value 100

Range of values -1, 1 to 231-1

AS-SYSTEME GmbH 21

date_format

The parameter date_format specifies the date format for Profiler reports. Each element must start with %1$, since all the for-
matting specifications apply to a single Java variable.

db_directory

The parameter db_directory instructs the Profiler to read a SQL trace file using the Oracle DBMS’s BFILE feature. The names of
directory objects are case-sensitive. Read permission on the directory objects used must be available. The SQL syntax for granting
read permission on a directory is:
GRANT READ ON DIRECTORY <db_directory> TO <grantee>;

The parameters db_directory and trace_file_directory are mutually exclusive.

db_encrypted_passwd

The parameter db_encrypted_passwd specifies the encrypted password for the database user on the target database. Run the Profiler
with the parameter encrypt=true to encrypt clear-text passwords.

db_release

The parameter db_release specifies the Oracle DBMS major release (e.g. '10') that generated a SQL trace file. It must be specified
if a trace file does not contain a trace file header with release information. The string may contain only digits.

Attribute Description

Data type string

Default value %1$td-%1$tb-%1$ty %1$tT

Range of values Any value that complies with the format specification of the Java
class java.util.Formatter.

Attribute Description

Data type string

Default value none

Range of values Name of a database directory object that points to the directory desig-
nated with the initialization parameter USER_DUMP_DEST or any
other directory containing SQL trace files.

Attribute Description

Data type string

Default value none

Range of values Valid encrypted password

Attribute Description

Data type integer

Default value none

Range of values 10, 11

AS-SYSTEME GmbH 22

db_user

The parameter db_user specifies a database user name for connecting to a target Oracle DBMS instance. The parameter db_user
must be set in order to enable correlations in real-time mode. Setting db_user is also required when using one of the following
parameters:

• session
• awr_flush_level
• sp_snap_level

encrypt

The parameter setting encrypt=true instructs the Profiler to encrypt a clear-text password. The Profiler prompts twice for a pass-
word without echoing the password typed. Then it displays the encrypted password on the screen. To enhance security, the encryp-
tion key depends on the operating system user name that is in effect while the Profiler runs. Hence, encrypted passwords cannot be
shared among different operating system users. If encrypt=true, the Profiler encrypts a password and exits.

help

Use the parameter setting help=true to see an overview of the Profiler’s parameters.

interactive

The parameter interactive controls whether or not the Profiler displays a menu for interacting with the user. Interactive mode allows
the user control when the trace file analysis ends. It is useful when tracing a certain code path in an interactive application. The set-
ting interactive=true cannot be used with a max_idle_time setting that is greater than zero. If interactive=true, the Profiler displays

Attribute Description

Data type string

Default value none

Range of values Any valid Oracle database user name

Attribute Description

Data type boolean

Default value false

Range of values true or false

Attribute Description

Data type boolean

Default value false

Range of values true or false

Attribute Description

Data type boolean

Default value true

Range of values true or false

AS-SYSTEME GmbH 23

a menu that gives access to the status of the trace file analysis. The setting interactive=false is appropriate when the trace file to be
analyzed is no longer growing, since the process that generated it has terminated or tracing was disabled.

jdbc_url

JDBC URL for connecting to a target Oracle instance in real-time mode.

lic_db_encrypted_passwd

The parameter lic_db_encrypted_passwd specifies the encrypted password for the database user on the license server database. Run
the Profiler with the parameter encrypt=true to encrypt clear-text passwords.

lic_db_user

The parameter lic_db_user specifies a database user name on the license server database. The Profiler connects to the license server
Oracle instance for license validation.

lic_listener_port

The port number of the Oracle TNS Listener that is used to connect to the license server Oracle DBMS instance.

Attribute Description

Data type string

Default value none

Range of values Any valid JDBC Thin URL with the following format:
jdbc:oracle:thin:@<host>:<port>/<instance service name>

Attribute Description

Data type string

Default value none

Range of values Any valid encrypted password

Attribute Description

Data type string

Default value none

Range of values Any valid Oracle database user name

Attribute Description

Data type integer

Default value 1521

Range of values 1024 to 65535

AS-SYSTEME GmbH 24

lic_listener_service

The parameter lic_listener_service specifies the instance service name for connecting to the license server Oracle DBMS instance.
The Profiler uses this setting for license validation.

log4j_config_url

The parameter log4j_config_url specifies the name of a property file that contains the log4j configuration. A file URL that repre-
sents an absolute path must be used when overriding the default value. File URLs have platform-specific syntax. File URLs on
Windows contain the drive letter, e.g. file:///C:/somedir/my_log4j.properties). UNIX file URLs contain “file:” followed by an abso-
lute path.

log4j_pattern_layout

The parameter log4j_pattern_layout specifies a layout for logging with Apache log4j. Available placeholders are: t: thread, p: log
level, c: logger, F: file, L: line number, m: message, n newline character. Each placeholder must be preceded by a percent sign (%).

logfile

The parameter logfile specifies the log file used by the Profiler. The format of log file entries is controlled by the parameter
log4j_pattern_layout.

Attribute Description

Data type string

Default value none

Range of values Any instance service name that the license server Oracle DBMS
instance registered with the license server TNS Listener.

Attribute Description

Data type string

Default value A platform-dependent file URL that points to the file
profiler_log4j.properties in <MPROF_HOME>/conf

Range of values Any valid file URL that points to a Java properties file for Apache
log4j.

Attribute Description

Data type string

Default value %p %c: %m%n

Range of values Any valid Apache log4j layout specification

Attribute Description

Data type string

Default value profiler.log

Range of values Relative or absolute platform-specific path name for the Profiler log
file

AS-SYSTEME GmbH 25

max_bind_sections

The parameter max_bind_sections specifies the maximum number of bind sections to include in a Profiler report. Bind variables
are important when running a captured SQL statement in order to reproduce its response time. A trace file may contain thousands
of bind variable sections, which in turn may contain dozens of bind variables. Use max_bind_sections to control how many bind
variable sections are incorporated into a report.

max_idle_time

The parameter max_idle_time specifies the maximum time in seconds to wait for a SQL trace file to grow or to be created in non-
interactive mode (interactive=false). If a trace file that is analyzed in real-time does not grow or is not created when the parameter
session is used within max_idle_time, the Profiler stops trying to read the trace file. If more than 0 bytes could be read from the
trace file the Profiler will attempt to create a report.

max_statements

The parameter max_statements specifies the maximum number of distinct statements to include in a report. The purpose of this
parameter is to avoid large reports containing statements with negligible contributions to response time.

mod_act_max_statements

The parameter mod_act_max_statements specifies the maximum number of distinct statements per module and action to include in
a report. The purpose of this parameter is to avoid large listings of statements invoked by a module that have negligible contribu-
tions to response time. Setting mod_act_max_statements=0 disables the subsection entitled “Invoked Statements” within the sec-
tion “Results by Module and Action” entirely.

Attribute Description

Data type integer

Default value 10

Range of values 1 to 231-1

Attribute Description

Data type integer

Default value 0

Range of values 1 to 231-1

Attribute Description

Data type integer

Default value 2000

Range of values 1 to 231-1

Attribute Description

Data type integer

Default value 50

Range of values 0 to 231-1

AS-SYSTEME GmbH 26

object_statistics

The parameter object_statistics controls whether or not the Profiler retrieves object statistics on tables and indexes in real-time
mode and incorporates the result in a report.

output_directory

The parameter output_directory is used for specifying where the Profiler writes reports.

properties

The parameter properties is intended for retrieving reusable parameter settings from a Java properties file in a file system accessible
to the Profiler. Parameter settings made by a properties file overrule default parameter values. Parameters passed to the Profiler on
the command line overrule parameter settings in a Java properties file.
Note: use the environment variable MPROF_PROPERTIES to refer to customized parameter settings without having to pass the
parameter properties on the command line.

real_time

Use the parameter real_time to enable or disable real-time correlations between a SQL trace file and data dictionary or V$ dynamic
performance views. The setting real_time=true is ignored unless the parameter db_user is set. Real-time correlations require a data-
base session, hence db_user must be set to honor real_time=true. If db_user is not set, the Profiler disables real-time correlations
and informs the user as shown below:
INFO profiler: Real-time mode: false (db_user='')

Attribute Description

Data type boolean

Default value true

Range of values true or false

Attribute Description

Data type string

Default value . (current directory)

Range of values Any valid directory with write permission

Attribute Description

Data type string

Default value none

Range of values Any valid path to a file that conforms to the specification of a Java
properties file.

Attribute Description

Data type boolean

Default value true

Range of values true or false

AS-SYSTEME GmbH 27

Note that trace files may be read as BFILEs over a database session when db_user is specified and real_time=false. In other words
trace files may be transferred using a database session without using the database session for performing correlations. The parame-
ters sql_trace_level, awr_flush_level, and sp_snap_level are honored when real_time=false. Of course db_user must be set to use
the aforementioned parameters.

report_name

Use the parameter report_name to specify an output file name for a Profiler report.

session

Use the parameter session to instruct the Profiler to enable SQL trace on a database session using the PL/SQL package
DBMS_MONITOR and to begin analyzing the resulting SQL trace file. See parameter sql_trace_level for controlling the SQL
trace level. The parameter session is ignored unless the parameter db_user is also set. The profiler attempts to automatically deter-
mine the trace file name as well as a database directory for reading a trace file as a BFILE through the LOB (Large OBjects) API.
Hence there is no need to use the parameters db_directory and sql_trace_file if the parameter session is set.

sp_snap_level

Use the parameter sp_snap_level to instruct the Profiler to take Statspack snapshots at the indicated level (the value -1 indicates that
no Statspack snapshots shall be taken). The first snapshot is taken just after the Profiler connects to the target DBMS instance. The
second snapshot is taken when the Profiler is asked to create a report or when it automatically stops reading the trace file in non-
interactive mode (interactive=false). If the parameter session is also set, the Profiler passes the session ID as an argument to the
function STATSPACK.SNAP, such that Statspack captures diagnostic data for the traced session in addition to the instance-level
diagnostic data.

Attribute Description

Data type string

Default value report.html

Range of values Any valid file name without a directory component.

Attribute Description

Data type string

Default value none

Range of values Any valid combination of <SID>.<SERIAL#> that corresponds to a
session that is currently connected to the target DBMS instance.

Attribute Description

Data type integer

Default value 7

Range of values -1, 0, 5, 6, 7, 10

AS-SYSTEME GmbH 28

sql_trace_file

Use the parameter sql_trace_file to specify the input SQL trace file to be processed by the Profiler.

sql_trace_level

The parameter value -1 indicates that the SQL trace level of the session specified using the parameter session is to remain unal-
tered. The other permissible values of the parameter control the SQL trace level in the same way as the level of the undocumented
event 100461. Table 2 shows the relationship between SQL trace levels and the kind of trace file entries generated at a particular
level. A database call is a generic term for a parse, execute, or fetch call. The value of the parameter sql_trace_level is ignored

unless the parameters db_user and session are also set. In interactive mode, a menu offers the user the choice to disable SQL trace
before generating a report and leaving the Profiler application or to keep SQL trace enabled beyond the execution of the Profiler.
The latter option may be useful to get an intermediate result for a long-running session. The menu displayed in interactive mode is
shown below:
$ mprof session=34.60 sql_trace_level=12
Choose:
1. Generate Report and Exit
2. Status
3. Abort
4. Disable SQL Trace

If the Profiler is started in non-interactive mode with sql_trace_level>0, then it will automatically disable SQL trace when it
reaches the end of the trace file and max_idle_time has been exceeded. Thus, the Profiler may be used to enable SQL trace and to
automatically create a report when the trace file has no longer grown during an interval specified with max_idle_time.

Attribute Description

Data type string

Default value none

Range of values Any valid file name of a SQL trace file without a directory compo-
nent.

Attribute Description

Data type integer

Default value 12

Range of values -1, 1, 4, 8, 12

1. See “Secret ORACLE” by Norbert Debes, Lulu Enterprises Inc., 2008, ISBN 978-1-4357-0551-7

Table 2: SQL Trace Levels

SQL Trace Level Database Calls Bind Variable Values Wait Events

1 yes no no

4 yes yes no

8 yes no yes

12 yes yes yes

AS-SYSTEME GmbH 29

statistics_level

The Profiler parameter statistics_level is used to specify a value for the Oracle initialization parameter by the same name. If the
value of the Profiler parameter statistics_level differs from the current value of the parameter statistics_level used by the target
DBMS instance, the Profiler will temporarily adjust the DBMS parameter accordingly. This functionality is available in real-time
mode only. Setting statistics_level=ALL while gathering performance diagnostic data makes sure that SQL statement execution
statistics can be retrieved with DBMS_XPLAN.DISPLAY_CURSOR. Execution plans obtained at statistics_level=ALL contain
estimated vs. actual row counts and allow easy identification of inaccurate estimates by the cost based optimizer (CBO).

think_time_threshold_ms

The parameter think_time_threshold_ms sets the threshold in milliseconds. If a “SQL*Net message from client” wait exceeds the
think time threshold, the excess portion of the wait time is accounted for with the pseudo wait event think time. The remainder,
which equals the think time threshold, is reported under the original event name “SQL*Net message from client”.The rationale
behind this classification is that a database client that does not make the next request on the database server in less than
think_time_threshold_ms is engaging in non database-related work. Think time cannot be reduced by optimizing an Oracle data-
base or instance. The contribution of think time to response time is important, since it limits the maximum speedup from optimiza-
tion. Hence think time is reported as a separate contributor to response time. Think time is also crucial as proof that database access
is not the cause of a performance problem.

trace_file_directory

Use the parameter trace_file_directory to inform the Profiler about the directory where the input trace file resides. This parameter
cannot be used in conjunction with db_directory. When used in a properties file, backslashes in the path name must be escaped with
the backslash character (\) since they have special meaning. To access trace files in C:\traces, you need to set:
trace_file_directory=C:\\traces

in a properties file.

Attribute Description

Data type string

Default value ALL

Range of values ALL, TYPICAL

Attribute Description

Data type integer

Default value 5

Range of values 1 to 60000

Attribute Description

Data type string

Default value none

Range of values Any valid file system directory.

AS-SYSTEME GmbH 30

use_awr

The parameter use_awr controls whether or not the Profiler attempts to perform correlations between an analyzed SQL trace file
and AWR views in real-time mode. If use_awr=true the Profiler retrieves exeuction statistics and plans pertaining to statements in
an analyzed SQL trace file from AWR views. Note that accessing any of the AWR DBA_HIST_* views requires a license for the
Diagnostics Pack from Oracle Corporation or one of its subsidiaries.

use_statspack

The parameter use_statspack may be used to enable or disable correlations between an analyzed trace file and Statspack repository
tables in real-time mode. Note that Statspack is not installed by default. You should not set use_statspack=true unless a working
installation of Statspack exists in the schema PERFSTAT of the target database. If use_statspack=true the Profiler attempts to
retrieve execution plans captured by Statspack pertaining to SQL statements in the analyzed trace file. Contrary to the Active
Workload Repository (AWR) Statspack is free of charge.

Profiler Report Structure and Contents
This section provides detailed information on the structure and contents of a MERITS Profiler report. A report contains resource
profiles, histograms, a trace file header, and so on. Many sections such as the one containing optimizer statistics, table columns,
indexes, and buffer cache contents appear only if the Profiler is used in real-time mode with a license file. Hence the report sections
for real-time mode and offline mode are documented in two separate sections.

Offline Mode
The subsequent sections describe Profiler report sections that appear in offline as well as real-time mode. Certain sections contain
additional information in real-time mode. Items that appear only in real-time mode are marked as such.

Report Date
This section contains the point in time when the report was generated and the Profiler version that generated the report.
Report Date: Fri 04-Dec-09 17:10:15 (generated by MERITS Profiler release 0.9.6)

Abbreviations
This section explains the meanings of abbreviations used throughout reports.

Trace File Header
An Oracle DBMS trace file contains a header with interesting information such as the number of CPUs in the server, the amount of
memory, the point in time when the trace file was created, etc. The header starts at line one of a trace file and continues up to the
first line that starts with three asterisks.
Note that the trace file header is missing if a trace file was created using Oracle’s TRCSESS utility or when the session level
parameter trace_file_identifier was changed by the database client after tracing had begun. If there is no trace file header in
a trace file, the Profiler cannot extract the DBMS version from the header and the parameter db_release must be set to inform the
Profiler about the Oracle DBMS release.

Attribute Description

Data type boolean

Default value false

Range of values true or false

Attribute Description

Data type boolean

Default value false

Range of values true or false

AS-SYSTEME GmbH 31

Sessions
This section lists the session identifiers encountered in a trace file. The format is <sid>.<serial> where sid corresponds with the col-
umn SID in V$SESSION and serial corresponds with the column SERIAL# in V$SESSION. Both numbers combined uniquely
identify a database session within the lifetime of an Oracle instance, i.e. the period between an instance startup up and the subse-
quent shutdown. Session identifiers are not unique throughout the lifetime of a database. Due to the limitations outlined in section
Limitations on page 48 the analysis of trace files containing more than a single session may lead to incorrect results. Below is an
example report section showing a session identifier:
Session in trace file(s): 1
40.9

Response Time and Statistics
This section contains statistics and a resource profile for a trace file as a whole. In other words this section includes data derived
from all the cursors found in a trace file. Below is an example:
Accounted-for response time (R): 1963.814 s
Measurement interval (delta tim): 1969.648 s
Measurement interval based on converted tim: 24-Jul-09 18:48:09.171 to 24-Jul-09 19:20:58.820
First timestamp: 24-Jul-09 18:48:09.203
Last timestamp: 24-Jul-09 19:20:58.812
Intra Database Call Wait Time: 316.344 s
Inter Database Call Wait Time: 11.071 s
Committed transactions: 20676
Committed transactions/s (based on delta tim): 10.50
Transaction rollbacks: 0
Commits (read only): 14738
Rollbacks (read only): 0
Oracle PARSE ERROR entries: 0
MERITS Profiler parser errors: 1014
Resource Profile for Trace File C:\traces\ten_ora_14552-swingbench.trc

Response Time Contributor Duration (s) Percent (%) Count Average (s)
___ _______________ ___________ _________ ___________
CPU (PARSE, EXEC, FETCH, CLOSE) 994.562500 50.5 207643 0.004790
unknown 647.684631 32.9 27 23.988317
db file sequential read 315.864838 16.0 26437 0.011948
SQL*Net message from client 8.847790 0.4 14737 0.000600
think time 2.127134 0.1 79 0.026926
log file switch completion 0.245403 0.0 5 0.049081
read by other session 0.123776 0.0 6 0.020629
SQL*Net message to client 0.095734 0.0 14736 0.000006
buffer busy waits 0.061340 0.0 31 0.001979
latch: cache buffers chains 0.022697 0.0 17 0.001335
log file sync 0.009506 0.0 31 0.000307
latch free 0.001054 0.0 7 0.000151
enq: TX - row lock contention 0.001030 0.0 9 0.000114
enq: TX - contention 0.000621 0.0 2 0.000311
latch: In memory undo latch 0.000345 0.0 4 0.000086
enq: FB - contention 0.000028 0.0 2 0.000014
cursor: pin S 0.000004 0.0 1 0.000004
Total 1969.648315 100.0 263774 0.007467

AS-SYSTEME GmbH 32

Statistics
Table 3 provides detailed information on the statistical metrics seen in the example above.

Resource Profile
A resource profile is an apportionment of response time often presented in tabular form. Each row of a tabular resource profile con-
tains a single contributor to response time, e.g. CPU consumption or a wait event. The following columns are included: contributor
name, contribution to response time in seconds (column heading “Duration”), percentage of response time (column heading “Per-
cent”), number of times the contributor was called upon (column heading “Count”), and average time consumed by a call upon the
contributor (column heading “Average”). The data in a resource profile is sorted by contribution to response time in descending
order. Hence the most significant contributors to response time appear in the top lines of the table. Reducing their impact will yield
the most benefit on the overall reduction of response time through tuning.

Table 3: Statistical Metrics

Metric Meaning

Accounted-for response time (R) The response time derived from the instrumentation of the Oracle DBMS. R is defined as
the sum of the elapsed time in PARSE, EXEC, and FETCH calls at recursive call depth zero
plus the elapsed time of inter database call wait time.

Measurement interval (delta tim) Delta tim is the difference between the highest and the lowest tim value in a trace file. Most
trace file entries contain the parameter tim, which is a timestamp with microsecond resolu-
tion. Essentially delta tim is wall-clock elapsed time whereas R is accounted for elapsed
time. As such, delta tim is more reliable than R.
By comparing the accounted-for response time with delta tim you may assess the instru-
mentation quality of the DBMS server. Ideally the trace file entries would account for
almost 100% of delta tim. If there is a large discrepancy, then the trace file probably records
functionality that is poorly instrumented, such as LOB or SecureFile access. Another sce-
nario is when CPU resources on the database server are so scarce that a substantial amount
of elapsed time is not accounted for by trace file entries. This causes a large contribution of
“unknown” origin.

Intra Database Call Wait Time Wait time that is caused by a database call. For example if a FETCH call requires a disk
read, a db file sequential read or db file scattered read wait event contributes to the elapsed
time of the FETCH.

Inter Database Call Wait Time Inter database call wait time is the wait time accounted for by the events SQL*Net message
to client and SQL*Net message from client.

Committed transactions Derived from XCTEND entries where rlbk=0 and rd_only=0.

Committed transactions/s (based
on delta tim)

This figure is calculated by dividing the number of committed transactions by delta tim.

Transaction rollbacks Derived from XCTEND entries where rlbk=1 and rd_only=0.

Commits (read only) Derived from XCTEND entries where rlbk=0 and rd_only=1.

Rollbacks (read only) Derived from XCTEND entries where rlbk=1 and rd_only=1.

Oracle PARSE ERROR entries The number of PARSE ERROR entries due to incorrect syntax or insufficient privileges to
access one or more database objects.

MERITS Profiler parser errors The number of lines in a trace file that the MERITS Profiler could not parse successfully.
This number is always greater than zero since the Profiler does not recognize all the infor-
mation in platform-specific trace file headers. If a trace file contains not just SQL trace data
but also systemstate or errorstack dumps then several thousand Profiler parser errors are to
be expected. Severe parser errors, such as when a WAIT event entry or database call cannot
be parsed are reported both in the terminal window as well as in a log file.

AS-SYSTEME GmbH 33

The last line of a resource profile contains totals for all columns. The total duration is identical to delta tim. MERITS Profiler
resource profiles contain up to two synthetic response time contributors. They are “unknown” and “think time”. A detailed explana-
tion of think time is on page 15. The difference between delta tim and CPU time plus wait time is shown as “unknown”. If a large
portion of the response time is attributed to an unknown origin, then either the trace file captured Oracle DBMS functionality that is
poorly instrumented or CPU resources on the DBMS server were so scarce that elapsed time increased significantly since DBMS
server processes had to wait for a CPU to become available. The example above is from a scenario with scarce CPU resources. A
large portion of the difference between delta tim and CPU time plus wait time is not explained by wait events and is reported as
“unknown”.

Database Call Statistics
At trace file level, this section shows totals and averages based on the three types of database calls (PARSE, EXEC, FETCH) in the
first three lines. The column “Count” is derived by counting the database calls in a trace file. The values in column “Elapsed” are
derived from the parameter e (elapsed time) of a database call trace file entry. The values in column “CPU” are derived from the
parameter c of a database call trace file entry. Averages are obtained by dividing the elapsed or CPU times by the number of data-
base calls in the column “Count”.
The values in the column “Disk” are derived from the database call parameter p (physical reads). Logical reads are represented by
the values in column “Query”. These are derived from the database call parameter cr (consistent reads). The column entitled “Block
Changes” shows values derived from the database call parameter cu (current blocks). Values in column “Rows” are derived from
the parameter r (rows). Library cache misses are found in the column entitled “Cursor Misses”. They are derived from the database
call parameter mis (miss).

DB Call Count Elapsed (s) Average Ela. (s) CPU (s) Average CPU (s) Disk Query Block Changes Rows Cursor Misses
______________ ___________ _____________ ________________ _____________ _______________ _____________ _____________ _____________ _____________ _____________
PARSE 14814 0.391 0.000026 0.641 0.000043 0 0 0 0 0
EXEC 132520 1952.352 0.014733 993.922 0.007500 26437 6816008 330369 58924 0
FETCH 60309 0.000 0.000000 0.000 0.000000 0 0 0 1084772 0
Total 207643 1952.744 0.009404 994.563 0.004790 26437 6816008 330369 1143696 0
Avg. per EXEC 1.567 0.014735 n/a 0.007505 n/a 0.199 51.434 2.493 8.630 0.000
Avg. per FETCH 3.443 0.032379 n/a 0.016491 n/a 0.438 113.018 5.478 18.964 0.000
Avg. per Row 0.182 0.001707 n/a 0.000870 n/a 0.023 5.960 0.289 1.000 0.000

Buffer cache hit ratio: 99.6 %
Parse call library cache hit ratio: 100.0 %

The bottom three lines of the database call statistics provide additional averages per execution (“Avg. per EXEC”), per fetch call
(“Avg. per FETCH”), and per row retrieved by the database client (“Avg. per Row”). By looking at the value where the table row
“Avg. per FETCH” meets the column “Rows” it becomes evident how many rows are retrieved on average by a FETCH database
call. It is much more efficient to retrieve a large number of rows in large batches of say 100 instead of small batches of five or less.
Each access to a block including repeated accesses to the same block when the amount of prefetched rows is less than the number
of rows per block counts as a consistent read (parameter cr). The higher the position of a column within the ordered sequence of
columns of a table, the higher the CPU cost incurred by accessing the column. Putting frequently accessed columns at the begin-
ning of a column list in a CREATE TABLE statement saves CPU time during FETCH calls.
By looking at the value where the table row “Avg. per Row” meets the column “Query” it becomes evident how many consistent
reads are needed to retrieve a single row. Values lower than ten are considered good. High values may indicate a full table scan or a
large index range scan.
Two additional metrics are provided along with the database call statistics. They are the buffer cache hit ratio and the parse call
library cache hit ratio. The buffer cache hit ratio is calculated according to the formula below:

In the equation above, the variables p, cr, and cu are the sum of the values of the database call parameters by the same name over all
database calls.
The parse call library cache hit ratio is calculated using this formula:

In the above formula the variable mis is the total number of PARSE calls with mis=1 and the variable PARSE calls represents all the
PARSE calls irrespective of the parameter value of mis.

Elapsed Time, CPU Usage, and Wait Time by Recursive Call Depth
This section shows whether the statements sent by the database client are responsible for the majority of response time or whether
recursive statements triggered by the aforementioned statements are the main issue. The data is shown in tabular form. Each col-
umn holds the data for a single recursive call depth. The number of columns depends on how many different recursive call depth
levels are present in the trace file analyzed. Three table rows are used to differentiate among database call elapsed time (row head-
ing “DB Call Elapsed Time”; derived from the parameter e of database call entries), CPU time (row heading “CPU Time”; derived

1 p
cr cu+
-----------------–⎝ ⎠

⎛ ⎞ 100⋅

1 mis
PARSE calls
------------------------------–⎝ ⎠

⎛ ⎞ 100⋅

AS-SYSTEME GmbH 34

from the parameter c of database call entries), and wait time (row heading “Wait Time”; derived from the parameter ela of WAIT
entries).
Recursive Call Depth 0 1 2
________________________ ______________________ ______________________ ______________________
DB Call Elapsed Time (s) 140.708 (1952.743) 1811.460 (1812.035) 0.575
CPU Time (s) 33.687 (994.563) 960.750 (960.875) 0.125
Wait Time (s) 8.953 (325.274) 315.823 (316.321) 0.498

The values in parentheses are cumulative values that are aggregated over higher levels of recursive call depth. If the database client
calls PL/SQL routines that in turn execute many SQL statements, then it is likely that the SQL statements executed at a higher
recursive call depth are responsible for the majority of the response time. The example above is from such a scenario. The database
call elapsed time at recursive call depth 1 is 1811.460 s whereas the value for recursive call depth 0 is only 140.708 s. Hence the
majority of the elapsed time is caused by SQL or PL/SQL statements at recursive call depth 1.

LOB Operation Statistics
Oracle11g SQL trace includes metrics for LOB operations. LOB operations cannot be attributed to a SQL statement. Hence LOB
operation statistics cannot be included in the section on individual statements. Currently LOB operations are only reported at the
trace file level.1

LOB Operation Statistics

Operation Calls Elapsed (s) CPU (s) Disk Query Blk. Chngs.
____________ ________ ______________ _____________ ________ ________ ___________
LOBFILCLOSE 0 0.000000 0.000000 0 0 0
LOBFILOPN 0 0.000000 0.000000 0 0 0
LOBGETLEN 0 0.000000 0.000000 0 0 0
LOBREAD 12374 0.426126 0.020000 25 25 0
LOBTMPCREATE 8772 0.100896 0.000000 0 0 0
LOBTMPFRE 8772 0.394375 0.000000 0 0 43860
LOBWRITE 8772 30.208376 26.150000 0 0 61404
Total 38690 31.129772 26.170000 25 25 105264

Results for Individual Statements
This section contains metrics for all the distinct SQL statements in a trace file. It starts with a section entitled “Top Statements”.

Top Statements
The “Top Statements” section contains only statements executed at recursive call depth zero (dep=0). Service time is the response
time spent in the DBMS server plus IPC latency wait time. Thus, service time excludes think time. IPC latency wait time is the total
wait time of the events “SQL*Net message from client” that did not exceed the think time threshold plus the total “SQL*Net mes-
sage to client” wait time associated with a certain statement.
Service time is the metric used to rank the top statements. The statement response time R includes think time. The percentage of
statement contribution to response time is reported based on delta tim. Statements at ranks higher than 10 that contribute less than
1.0% to the total service time are not listed. The statement text is truncated to at most 80 characters. An example “Top Statements”
section is reproduced below:

Top Statements

 Rank Hash Value/Cursor SQL ID Service Time (s) Percent R (s) Percent Statement Text
_____ _________________ ______________ ________________ ________ _________ ________ __
 1 966758382 1410.635 71.62 % 1411.207 71.65 % BEGIN :1 := orderentry.neworder(:2,:3,:4); END;
 2 1631089791 188.788 9.58 % 189.252 9.61 % BEGIN :1 := orderentry.browseproducts(:2,:3,:4); END;
 3 3589721925 160.440 8.15 % 160.875 8.17 % BEGIN :1 := orderentry.newcustomer(:2,:3,:4,:5,:6,:7); END;
 4 4030344732 139.015 7.06 % 139.318 7.07 % BEGIN :1 := orderentry.browseandupdateorders(:2,:3,:4); END;
 5 2086907756 62.413 3.17 % 63.160 3.21 % BEGIN :1 := orderentry.processorders(:2,:3); END;
 6 8 0.000 0.00 % 0.002 0.00 % Note: statement text unavailable due to absence of parse call from trace file
Total 1961.290 99.58 % 1963.814 99.70 %

In real-time mode, the Profiler attempts to determine the SQL ID for statements in Oracle10g trace files and includes the SQL ID as
an additional column in the “Top Statements” section. The SQL ID is present in Oracle11g trace files and is hence included in the
“Top Statements” section even in offline mode.
If SQL trace is enabled after some statements have already been parsed and these statements are reused, there is no PARSING IN
CURSOR entry for those statements in the trace file. Hence the statement text and hash value (as well as the SQL ID) associated
with a certain cursor are not available. Such statements are listed under their cursor number as shown in the example below:
Rank 26: Cursor 27

1. Oracle bug 12589689 entitled “NEED TO INCLUDE LOB LOCATOR IN TRACE FILES, CURRENTLY WE HAVE ONLY
LOBREAD” contains an enhancement request to make LOB operations attributable to SQL statements.

AS-SYSTEME GmbH 35

~~~~~~~~~~~~~~~~~~

Response Time: 0.023 s (0.00 % of delta tim)
Recursive Call Depth: 1
Module: 'New Customer'
Action: 'getOrdersByCustomer'
Waits: 3
Total Wait Time: 0.023 s
Intra Database Call Wait Time: 0.023 s
Line Number: 1078

Statement Text
~~~~~~~~~~~~~~

Note: statement text unavailable due to absence of parse call from trace file

The hash value and statement text of cursors that are associated with a PARSING IN CURSOR entry is known. Both items are
included in the report. The format used is as shown in the following example:
Rank 2: Statement with Hash Value 2863564559
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Response Time: 1081.732 s (54.92 % of delta tim)
SQL ID: dw2zgaapax1sg
Force Matching Signature: 3138049466602010507
MD5 Hash Value: 3A7DCCD2344B7F8D7C3C39C1B56E88C5
Command Type: 3 (SELECT)
Parsing User ID: 78 (SOE)
Parsing Schema ID: 78 (SOE)
Optimizer Goal: 1 (ALL_ROWS)
Recursive Call Depth: 1
Module: 'New Order'
Action: 'getProductDetailsByCategory'
Waits: 30
Total Wait Time: 0.026 s
Intra Database Call Wait Time: 0.026 s
Line Number: 110

Statement Text
~~~~~~~~~~~~~~

SELECT PRODUCTS.PRODUCT_ID, PRODUCT_NAME, PRODUCT_DESCRIPTION, CATEGORY_ID, WEIGHT_CLASS,
WARRANTY_PERIOD, SUPPLIER_ID, PRODUCT_STATUS, LIST_PRICE, MIN_PRICE, CATALOG_URL,
QUANTITY_ON_HAND FROM PRODUCTS, INVENTORIES WHERE PRODUCTS.CATEGORY_ID = :B1 AND
INVENTORIES.PRODUCT_ID = PRODUCTS.PRODUCT_ID ORDER BY INVENTORIES.WAREHOUSE_ID

The metrics available for individual statements are explained in Table 4.

Table 4: Metrics for Individual Statements

Metric Meaning

Response Time Includ-
ing Think Time

The sum of all e values plus the sum of all inter database call waits (i.e. “SQL*Net message from
client” and “SQL*Net message to client”).

Response Time Exclud-
ing Think Time

The same as “Response Time Including Think Time” above, except that only “SQL*Net message
from client” wait time below the think time threshold is considered.

Recursive Elapsed Time The total elapsed time associated with recursive statements triggered by the current statement.

AS-SYSTEME GmbH 36

Statement Level Resource Profile and Database Call Statistics
The sections entitled “Statement Level Resource Profile” and “Database Call Statistics” at statement level have the same structure
as at trace file level. Please refer to the information on these sections outlined earlier.

SQL ID The SQL identifier associated with the statement text. The SQL ID is part of the SQL trace file for-
mat starting with Oracle DBMS release 11.1. The profiler attempts to determine the SQL ID based
on the hash value in Oracle10g trace files by accessing the V$ view V$SQL in real-time mode.

Force Matching Signa-
ture

The force matching signature from the V$ view V$SQL. Statements with identical force matching
signatures are candidates for cursor sharing if the initialization parameter cursor_sharing has a non-
default value. This item is present in real-time mode only.

MD5 Hash Value A hash value calculated based on the normalized statement text using the MD5 algorithm. Normal-
ization replaces literals with placeholders, such that statements that differ only by literals have the
same MD5 hash value. The MERITS Profiler includes a parser for SQL statements. The purpose of
the MD5 hash value is to identify statements that differ only by literals. The profiler automatically
aggregates statements with identical MD5 hash values. Hence the impact of statements that are
semantically identical but are not reusable due to varying literals is shown under a single statement
instead of as hundreds or thousands of different statements that may contribute only marginally to
response time. Unfortunately software vendors build Oracle database applications without bind
variables. The MD5 hash value aids with performance diagnoses of such applications.

Command Type The type of SQL or PL/SQL command, e.g. SELECT, UPDATE, DELETE, etc. The command
name is reported in addition to the numeric command type found in the trace file.

Parsing User ID The numeric user ID of the database user that parsed the statement. This is either the user ID of the
user that logged in or 0 (SYS). In real-time mode the numeric ID is resolved to the user name. If
the resolution fails, e.g. because the user no longer exists in the database, “n.r” for not resolvable is
reported.

Parsing Schema ID The numeric schema ID of the schema that provided the context for parsing the statement. In real-
time mode the numeric ID is resolved to the user name. If the resolution fails, e.g. because the user
no longer exists in the database, “n.r” for not resolvable is reported.

Optimizer Goal The numeric optimizer goal found in the trace file. The denominator of the optimizer goal (e.g.
ALL_ROWS, CHOOSE) is shown in parentheses.

Recursive Call Depth The recursive call depth (dep) of the first PARSING IN CURSOR entry associated with the current
statement.

Waits The total number of WAIT entries associated with a cursor.

Total Wait Time The total wait time associated with a cursor.

Intra Database Call Wait
Time

The total intra database call wait time associated with a cursor.

Inter Database Call Wait
Time

The total inter database call wait time associated with a cursor. “SQL*Net message from client”
and “SQL*Net message to client” are classified as inter database call wait events. All other wait
events are intra database call wait events.

IPC latency wait time The total wait time of “SQL*Net message from client” below the think time threshold plus the total
wait time of “SQL*Net message to client” associated with a cursor.

Line Number The line in the trace file where a statement (or cursor) was first encountered.

Table 4: Metrics for Individual Statements

Metric Meaning

AS-SYSTEME GmbH 37

Row Prefetch Histogram
A row prefetch histogram provides additional information on FETCH database calls associated with the execution of SELECT
statements. A FETCH call may prefetch a certain number of rows from a database table or some other result set. The number of
prefetched rows is called “fetch array size” by some sources. The value of the parameter r in FETCH SQL trace file entries shows
how many rows have been fetched.
The SQL*Plus parameter ARRAYSIZE controls how many rows are prefetched by SQL*Plus. A JDBC application may modify
the default prefetch size by calling the method OracleConnection.setStatementCacheSize(). Generally each Oracle DBMS interface
has its own method for modifying the prefetch size.
If the number of prefetched rows is less than the number of rows in a database block, the same block has to be visited by multiple
FETCH database calls causing unnecessary consistent reads. Retrieving a large result set of several hundred or even thousands of
rows is much more efficient with a large prefetch size. A row prefetch histogram is very useful for identifying FETCH database
calls that use too small a prefetch size. FETCH calls are assigned to histogram buckets based on the number of rows fetched. For
example, if a FETCH call returned 15 rows it is assigned to the bucket for the range “<= 16” since 15 is larger than 8 and smaller
than 16. The smallest range is “<=1”. Each subsequent range covers twice the prefetch size of the previous range.
Inefficient processing is characterized by a large number of rows retrieved with small prefetch sizes. Most or all of the elapsed time
of a SELECT statement might be in the bucket for the range “<= 1”. For each histogram bucket that is responsible for a certain
range of rows retrieved with a single fetch call, the following additional information is provided:

• how many rows were retrieved by all the FETCH calls in the histogram bucket (column Rows)
• the average number of rows retrieved by a single FETCH call (column Avg. Rows)
• the elapsed time of all the FETCH calls in the histogram bucket (column Elapsed)
• the percentage of elapsed time of all the FETCH calls in a bucket vs. the total elapsed time of all FETCH calls repre-

sented by a histogram (column Pct. Elapsed)
• the average elapsed time of all the FETCH calls in a bucket (column Avg. Ela.)
• the number of FETCH calls assigned to a bucket (column Fetch Calls)
• the percentage of FETCH calls in a bucket vs. the total number of all the FETCH calls represented by a histogram

An example of a row prefetch histogram is reproduced below. The database client retrieved 195 rows with an average prefetch size
of 15 rows. All together 15 FETCH calls were made and 86.7 % of the FETCH calls had an average prefetch size of 15 rows.
Row Prefetch Histogram

 Range Rows Avg. Rows Elapsed (s) Pct. Elapsed Avg. Ela. (s) Fetch Calls Percent
__________ __________ __________ ____________ ____________ _____________ ____________ _______
 <= 1 1 1.0 0.007907 71.5 0.007907 1 6.7
 <= 2 0 0.0 0.000000 0.0 0.000000 0 0.0
 <= 4 0 0.0 0.000000 0.0 0.000000 0 0.0
 <= 8 8 8.0 0.000160 1.4 0.000160 1 6.7
 <= 16 195 15.0 0.002999 27.1 0.000231 13 86.7
 Total 204 13.6 0.011066 100.0 0.000738 15 100.0

Recursive Descendants
This section contains the cursor number or hash value for each recursive statement triggered by the current statement. An excerpt
from the statement text is also shown. The column “Parsing ID” is used to differentiate among recursive statements that are part of
the application code and recursive statements that are part of the Oracle DBMS code base. The latter statements have a parsing ID
value of 0 (SYS). In real-time mode the Parsing ID is resolved to the user name, if possible.
 Hash Value Elapsed Time (s) Parsing ID Statement Text (Excerpt)
___________ ________________ _______________ __
 2863564559 1068.692 78 (SOE) SELECT PRODUCTS.PRODUCT_ID, PRODUCT_NAME, PRODUCT_DESCRIPTIO
 2084491117 67.198 78 (SOE) SELECT CUSTOMER_ID, CUST_FIRST_NAME, CUST_LAST_NAME, NLS_LAN
 2637862082 39.020 78 (SOE) SELECT QUANTITY_ON_HAND FROM PRODUCT_INFORMATION P, INVENTOR

Execution Plan
This section contains the execution plans associated with a cursor (if any). Multiple execution plans per statement are recognized
and reported. Except under rare circumstances or when tracing a tuning session with varying optimizer settings within a single ses-
sion, the execution plan for a statement remains constant.

Execution Plan 1 (1 occurrence(s)):

 ID PID Rows Operation Ela. (Self) Ela. (Cum.) CR (Self) CR (Cum.) PR (Self) PR (Cum.) PW (Self) PW (Cum.)
___ ___ _________ _______________________________________ ____________ ____________ _________ _________ _________ _________ _________ _________
 1 0 4409 TABLE ACCESS BY INDEX ROWID ORDER_ITEMS 0.816097 25.307964 4506 45147 68 1915 0 0
 2 1 8818 NESTED LOOPS 0.169614 24.491867 0 40641 0 1847 0 0
 3 2 4409 NESTED LOOPS 0.103506 22.706345 0 31699 0 1728 0 0

AS-SYSTEME GmbH 38

 4 3 4409 TABLE ACCESS BY INDEX ROWID ORDERS 0.335824 0.479326 4584 14063 24 25 0 0
 5 4 4409 INDEX RANGE SCAN ORD_STATUS_IX 0.143502 0.143502 9479 9479 1 1 0 0
 6 3 4409 TABLE ACCESS BY INDEX ROWID CUSTOMERS 12.727343 22.123512 4409 17636 955 1703 0 0
 7 6 4409 INDEX UNIQUE SCAN CUSTOMERS_PK 9.396168 9.396168 13227 13227 748 748 0 0
 8 2 4409 INDEX RANGE SCAN ORDER_ITEMS_PK 1.615911 1.615911 8942 8942 119 119 0 0

Physical Reads by Database Object
This section reports physical reads by database object. The database object ID is derived from the parameter obj# in wait events
related to physical reads (“db file sequential read” and “db file scattered read”). The meanings of the column headings are
explained in Table 5.

Below is an example of a section with detailed data on physical reads:
Obj. ID SB Reads SBR Time Avg. SBR Time MB Reads MBR Time Avg. MBR Time MBR Blocks Avg. Blocks Owner & Segment
_______ _________ ___________ _____________ _________ ___________ _____________ __________ ___________ __
 19155 1 0.016 0.016 1 0.001 0.001 5 5.0 HR.JOBS
 19139 1 0.008 0.008 1 0.001 0.001 5 5.0 HR.EMPLOYEES
 19162 1 0.000 0.000 1 0.001 0.001 5 5.0 HR.LOCATIONS
 19138 1 0.000 0.000 0 0.000 0.000 0 0.0 HR.DEPT_LOCATION_IX
 19136 1 0.000 0.000 0 0.000 0.000 0 0.0 HR.DEPARTMENTS

In the above example, one single block read and 1 multi-block read occurred on the segment HR.JOBS. The multi-block read con-
sisted of five blocks read in a single read request to the operating system. It took 1 ms to perform the five block multi-block read.

Buffer Busy Waits
This section provides detailed information on buffer busy waits. It may be helpful in identifying frequently accessed blocks. Only
blocks that were involved in buffer busy waits of more than 1 ms are reported.
Buffer Busy Waits with Wait Time >= 1 ms
__

File & Block Count Wait Time (s)
_______________ _______ _____________
7.11854 2 0.002

Use the following query to resolve the file and block to the segment owner and name:
SQL> SELECT owner, segment_name

Table 5: Physical Reads

Metric Meaning

Obj. ID Object ID (obj#); In real-time the object ID is resolved to segment owner and name using the data diction-
ary view DBA_OBJECTS.

SB Reads Single block reads

SBR Time Single block read time; The total elapsed time of all single block reads pertaining to a certain database
object.

Avg. SBR Time Average single block read time.

MB Reads Multi-block reads, i.e. the number of “db file scattered read” wait events pertaining to a certain segment.

MBR Time Multi-block read time; The total elapsed time of all multi-block reads pertaining to a certain database
object.

Avg. MBR Time Average multi-block read time.

MBR Blocks The total number of blocks read using multi-block reads.

Avg. Blocks The average number of blocks read in a single “db file scattered read” wait event, i.e. a multi-block read
operating system call. Note that blocks that are already in the buffer cache are not read again when a seg-
ment is accessed using multi-block reads. The more blocks of a segment are already in the cache, the less
likely it will be that the DBMS can use the full multi-block read size configured with the initialization
parameter db_file_multiblock_read_count.

Owner & Seg-
ment

Owner and name of the segment. This column is present in real-time mode only.

AS-SYSTEME GmbH 39

FROM dba_extents
WHERE file_id=&file_id
AND &block_id BETWEEN block_id and block_id + blocks -1;
Enter value for file_id: 7
old 3: WHERE file_id=&file_id
new 3: WHERE file_id=7
Enter value for block_id: 11854
old 4: AND &block_id BETWEEN block_id and block_id + blocks -1
new 4: AND 11854 BETWEEN block_id and block_id + blocks -1

OWNER SEGMENT_NAME
-------- ---------------
SOE ORDERS

Note that the above query may be quite expensive. Hence it is not run automatically by the Profiler.

Captured Bind Variables
This section contains a configurable number of bind variable sets. The bind variables were supplied to the DBMS server as actual
values for placeholders in SQL or PL/SQL statements by an application. The contents of this section are derived from BINDS trace
file entries. The number of bind variable sets included in a report is limited using the parameter max_bind_sections.
Bind Section 1:
...............

Position Type Value
________ _________________ __
 0 null null
 1 NUMBER 1029951
 2 NUMBER 0
 3 NUMBER 0

Bind Section 2:
...............

Position Type Value
________ _________________ __
 0 null null
 1 NUMBER 1039626
 2 NUMBER 0
 3 NUMBER 0

Results by Module and Action
The Profiler is able to attribute database calls and wait events to modules and actions. An instrumented Oracle client application
informs the DBMS engine about the tasks it performs by setting module and action. The section “Results by Module and Action” is
where the benefits from instrumenting software may be reaped. This section points out which module and action is responsible for
the highest resource consumption.
Module and action combinations are sorted based on delta tim within the trace file section(s) attributed to the respective module
and action. For a module and action, delta tim is the difference between the first tim value encountered after entering a module and
action combination and the last tim value before leaving a module and action.
Each section for a module and action contains three subsections:

• A resource profile
• Database call statistics
• Statements invoked while the module and action combination was in effect

Resource usage of the invoked statements is reported including the resource usage of recursive descendants. Please refer to the sec-
tion on “Individual Statements” to find the resource consumption by recursive descendants alone.

Results by Module and Action

Distinct combinations of module and action: 5

Rank 1: Module and Action 'img_load.lob_load'
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Calls: 100



AS-SYSTEME GmbH 40

Delta tim: 5.299378 s
Accounted for R: 1.850351 s

Response Time Contributor                        Duration (s) Percent (%)     Count Average (s) 
_____________________________________________ _______________ ___________ _________ ___________ 
SQL*Net message from client                          1.649443        89.1     11300    0.000146 
CPU (PARSE, EXEC, FETCH, CLOSE)                      0.234375        12.7       120    0.001953 
SQL*Net vector data from client                      0.207704        11.2     11200    0.000019 
db file sequential read                              0.039569         2.1       213    0.000186 
SQL*Net message to client                            0.028717         1.6     11300    0.000003 
SGA: allocation forcing component growth             0.022815         1.2         1    0.022815 
enq: TX - contention                                 0.002560         0.1         1    0.002560 
direct path write                                    0.002423         0.1         4    0.000606 
enq: HW - contention                                 0.001559         0.1         1    0.001559 
Disk file operations I/O                             0.000312         0.0         1    0.000312 
unknown                                             -0.339126       -18.3         1   -0.339126 
Total                                                1.850351       100.0     34142    0.000054 

Database Call Statistics
------------------------

DB Call              Count   Elapsed (s) Average Ela. (s)       CPU (s) Average CPU (s)  Disk  Query  Curr. Blocks  Rows Cursor Misses 
______________ ___________ _____________ ________________ _____________ _______________ _____ ______ _____________ _____ _____________ 
PARSE                    5         0.000         0.000000         0.000        0.000000     0      0             0     0             0 
EXEC                   105         0.172         0.001640         0.234        0.002232     0      0             0     1             0 
FETCH                    5         0.000         0.000000         0.000        0.000000     0      0             0     1             0 
CLOSE                    5         0.000         0.000008         0.000        0.000000     0      0             0     0             0 
Total                  120         0.172         0.001435         0.234        0.001953     0      0             0     2             0 
Avg. per EXEC        1.143      0.001640              n/a      0.002232             n/a 0.000  0.000         0.000 0.019         0.000 
Avg. per FETCH      24.000      0.034438              n/a      0.046875             n/a 0.000  0.000         0.000 0.400         0.000 
Avg. per Row        60.000      0.086096              n/a      0.117188             n/a 0.000  0.000         0.000 1.000         0.000 

Number of invoked statements: 8

Rank Hash Value/Cursor SQL ID        Execs DB Calls Elapsed (s) CPU (s)     Disk Query Curr. Blocks Rows Csr. Mis. Statement Text                      
____ _________________ _____________ _____ ________ ___________ _______ ________ _____ ____________ ____ _________ ____________________________________
   1                 0 null              0        0       1.656   0.000        0     0            0    0         0 Note: statement text unavailable due
   2        1776478125 6rpu5mxny5txd   100      100       0.194   0.234        0     0            0    0         0 CALL BEGIN_TASK(:module, :action, :c
   3        3096556448 0kkhhb2w93cx0     1        3       0.004   0.000        0     3            1    1         0 update seg$ set type#=:4,blocks=:5,e
   4         429649310 1rts790ctrvcy     1        4       0.000   0.000        0     1            0    0         0 select lobj# from lobcomppart$ where
   5        1570213724 bsa0wjtftg3uw     1        5       0.000   0.000        0     3            0    1         0 select file# from file$ where ts#=:1
   6        4125516341 9gkq7rruycsjp     1        4       0.000   0.000        0     1            0    0         0 select parttype, partcnt, partkeycol
   7        1429416219 b1rhz2jam6a8v     1        4       0.000   0.000        0     1            0    0         0 select parentobj# from sys.lobfrag$ 
   8        2812718187 537c8ufmudb3b     0        0       0.000   0.000        0     0            0    0         0 SELECT /* OPT_DYN_SAMP */ /*+ ALL_RO

Wait Event Histograms
This section provides histogram data for each wait event encountered in a trace file. Wait events are assigned to histogram buckets
based on the duration of the wait event. Each histogram bucket covers wait events with a certain minimum and maximum duration.
The maximum wait time associated with a bucket doubles from one bucket to the next. Unused buckets at the low end are not dis-
played. In the subsequent example, the lowest bucket covers wait events that took longer than 8 µs and at most 16 µs. According to
the table column “Count” two wait events were assigned to this histogram bucket. According to the column “Percent” these two
wait events account for 22.2% of the total elapsed time caused by the wait event. Columns that contain the abbreviation “Cum.”
(for cumulative) in their headings contain cumulative values for the respective bucket and all buckets with a smaller range. The
value 66.7 in the column with the heading “Pct. Cum. Count” (row 4; column 10) means that 66.7 % of the wait events represented
by the histogram completed in 128 µs or less. Cumulative values for a certain row are calculated by aggregating the column values
of all the rows with a smaller range.

Histogram for Wait Event 'enq: TX - row lock contention'
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 Range Elapsed (s) Pct. Elapsed Count Percent Avg. Ela. (s) Cum. Ela. (s) Pct. Cum. Ela. Cum. Count Pct. Cum. Count
_____________ ____________ ____________ ____________ _______ _____________ _____________ ______________ ____________ _______________
 <= 16 micros 0.000023 2.2 2 22.2 0.000012 0.000023 2.2 2 22.2
 <= 32 micros 0.000000 0.0 0 0.0 0.000000 0.000023 2.2 2 22.2
 <= 64 micros 0.000000 0.0 0 0.0 0.000000 0.000023 2.2 2 22.2
<= 128 micros 0.000391 38.0 4 44.4 0.000098 0.000414 40.2 6 66.7
<= 256 micros 0.000351 34.1 2 22.2 0.000175 0.000765 74.3 8 88.9
<= 512 micros 0.000265 25.7 1 11.1 0.000265 0.001030 100.0 9 100.0
 Total 0.001030 100.0 9 100.0 0.000114

Real-Time Mode
The subsequent sections describe Profiler report sections that appear solely in real-time mode. Note that only additional report sec-
tions are generated in real-time mode. There are no report sections that appear in offline mode but are omitted in real-time mode.

Active Workload Repository Snapshots
If the MERITS Profiler parameter awr_flush_level has the value typical or all, then the Profiler takes an AWR snapshot after it con-
nects to the target DBMS instance and before it starts parsing the input trace file. It takes another AWR snapshot when the input
trace file is exhausted or the user instructs the Profiler to stop reading the input trace file. The snapshot numbers are included at the
beginning of the Profiler report. The Profiler generates an AWR report for the interval covered by the snapshots using the package
DBMS_WORKLOAD_REPOSITORY. If the Profiler parameter session is set to indicate a valid database session, then an ASH
report is also generated. AWR and ASH reports are placed in the same directory as Profiler reports. Both AWR and ASH reports are
generated in HTML format.
Begin snapshot: 2495
End snapshot: 2496
AWR report: awr_report_2495_2496.html
ASH report: ash_report_2495_2496.html

AS-SYSTEME GmbH 41

Hardware
This section provides information on the CPU resources that are available to the Oracle DBMS instance that generated the trace
file. The number of CPU cores indicated is determined from the Oracle initialization parameter cpu_count.
cpu_count=2 (number of CPU cores)

Initialization Parameters
This section list all parameters with non-default values as well as parameters with default values that are relevant to performance
diagnosis and optimization.

Name Value Default Modified
_______________________________ __ _______ ________
_ash_sample_all FALSE FALSE FALSE
background_dump_dest C:\PROGRAMME\ORACLE\PRODUCT\ADMIN\TEN\BDUMP FALSE FALSE
compatible 10.2.0.1.0 FALSE FALSE
control_files C:\ORADATA\TEN\CONTROL01.CTL, C:\ORADATA\TEN\CONTROL02.CTL, C:\ORADATA\TEN\CONTROL03.CTL FALSE FALSE
core_dump_dest C:\PROGRAMME\ORACLE\PRODUCT\ADMIN\TEN\CDUMP FALSE FALSE
create_bitmap_area_size 8388608 TRUE FALSE
db_block_size 8192 FALSE FALSE
db_cache_size 28M FALSE FALSE
db_domain oradbpro.com FALSE FALSE
db_file_multiblock_read_count 16 FALSE FALSE
db_name TEN FALSE FALSE
db_16k_cache_size 52M FALSE FALSE
db_2k_cache_size 8M FALSE FALSE
disk_asynch_io TRUE TRUE FALSE
dispatchers (protocol=tcp)(dispatchers=1) FALSE FALSE
hash_area_size 131072 TRUE FALSE
java_pool_size 32M FALSE FALSE
job_queue_processes 1 FALSE FALSE
large_pool_size 0 FALSE FALSE
local_listener listener.oradbpro.com FALSE FALSE
log_archive_dest_1 location=c:\temp FALSE FALSE
log_buffer 6984704 TRUE FALSE
max_dump_file_size UNLIMITED TRUE FALSE
open_cursors 300 FALSE FALSE
optimizer_dynamic_sampling 2 TRUE FALSE
optimizer_features_enable 10.2.0.3 TRUE FALSE
optimizer_index_caching 0 TRUE FALSE
optimizer_index_cost_adj 100 TRUE FALSE
optimizer_mode ALL_ROWS TRUE FALSE
optimizer_secure_view_merging TRUE TRUE FALSE
parallel_execution_message_size 2148 TRUE FALSE
pga_aggregate_target 256M FALSE FALSE
processes 50 FALSE FALSE
resource_limit TRUE FALSE FALSE
resource_manager_plan SYSTEM_PLAN FALSE FALSE
service_names TEN.oradbpro.com FALSE FALSE
shared_pool_reserved_size 10M TRUE FALSE
shared_pool_size 200M FALSE FALSE
shared_servers 0 FALSE FALSE
sort_area_size 65536 TRUE FALSE
statistics_level TYPICAL FALSE FALSE
streams_pool_size 20M FALSE FALSE
undo_management AUTO FALSE FALSE
undo_tablespace UNDOTBS1 FALSE FALSE
user_dump_dest C:\PROGRAMME\ORACLE\PRODUCT\ADMIN\TEN\UDUMP FALSE FALSE

System Statistics
This section shows the operating system statistics that affect the optimization of SQL statements by the cost based optimizer
(CBO). The documented interface package DBMS_STATS is used to retrieve the system statistics. By default only so called “no
workload” statistics exist. Workload statistics may be gathered by using the package DBMS_STATS. These provide the optimizer
with better information on the hardware capabilities than no workload statistics. Jonathan Lewis, the author of “Cost-Based Oracle
Fundamentals” recommends gathering and setting workload statistics. Note that gathering workload statistics will yield varying
results over time. It is recommended to gather workload statistics in a statistics table created using
DBMS_STATS.CREATE_STAT_TABLE instead of immediatly importing them into the data dictionary base table
SYS.AUX_STATS$. Workload statistics from several periods should by scrutinized and sensible values should be set using
DBMS_STATS.SET_SYSTEM_STATS.
Gathered between 2008-10-21 20:50:00.0 and 2008-10-21 20:50:00.0

Parameter Value Description
__________ ________________ __
cpuspeednw 1386.2 Noworkload CPU speed (million operations/s)
ioseektim 10.0 I/O seek time (ms)
iotfrspeed 4096.0 I/O transfer speed (bytes/ms)
cpuspeed undefined Workload CPU speed (million operations/s)
maxthr undefined Maximum I/O system throughput (bytes/s)
mbrc undefined Average mutli block read count
mreadtim undefined Multiblock read time (ms/block)
slavethr undefined Maximum throughput of a parallel execution slave (bytes/s)
sreadtim undefined Single block read time (ms)

AS-SYSTEME GmbH 42

DBMS_STATS Default Values
This section lists the default values that are used by the package DBMS_STATS when calculating object statistics for tables and
indexes. The default setting DBMS_STATS.AUTO_SAMPLE_SIZE for the DBMS_STATS parameter may cause objects statistics
with very low quality, since the fraction of blocks that are sampled may be too low. It is advisable to set estimate_percent to at least
25. Generally it is preferable to have higher quality statistics that are updated on a weekly basis with a higher value for
estimate_percent than to have low quality statistics that are upated every day based on the automatic statistics gathering introduced
with Oracle10g. It is feasible to gather statistics on a daily basis with the DBMS_STATS parameter “options” set to “GATHER
EMPTY” to make sure that all objects have statistics. The higher overhead of using an estimate_percent of 25 may be offset by cal-
culating statistics with “options” set to “GATHER STALE” on a weekly basis.
Poor execution plans may result from inaccurate statistics. If function-based indexes are used, make sure that the hidden columns
that implement them have accurate statistics. This may require using a “method_opt” setting of “FOR ALL HIDDEN COL-
UMNS”. Refer to a MERITS Profiler report in real-time mode or the data dictionary view DBA_TAB_COLS for information on
hidden columns pertaining to function-based indexes.
Following is an excerpt from a MERITS Profiler report in text mode that shows DBMS_STATS settings that all have default val-
ues.

DBMS_STATS Default Values
~~~~~~~~~~~~~~~~~~~~~~~~~

AUTOSTATS_TARGET CASCADE                 DEGREE ESTIMATE_PERCENT            GRANULARITY METHOD_OPT                NO_INVALIDATE              
________________ _______________________ ______ ___________________________ ___________ _________________________ __________________________ 
AUTO             DBMS_STATS.AUTO_CASCADE NULL   DBMS_STATS.AUTO_SAMPLE_SIZE AUTO        FOR ALL COLUMNS SIZE AUTO DBMS_STATS.AUTO_INVALIDATE 

Correlation with V$SQL and V$SQL_PLAN_STATISTICS_ALL
This section provides a lot of valuable data on SQL statement execution that are not available at all in SQL trace files or that may
be missing under certain circumstances. For example, if a database client running against Oracle10g is traced, the trace file will
only contain execution plans for cursors that were closed while tracing was active. This may result in SQL trace files that do not
contain execution plans for several statements. The MERITS Profiler compensates for this by looking up the execution plans for all
statements with known hash values and including them in the report. Multiple plans for a single statement are supported. Hence it
will be evident whether the plan for a statement has changed. Each distinct execution plan has a separate child number in V$SQL.
If multiple plan hash values for a single statement exist, then this indicates that different execution plans have been used. If the Ora-
cle instance runs with statistics_level=ALL additional information on the last execution including actual execution time and buffer
gets may be available. The MERITS Profiler is able to set statistics_level=ALL during the measurement interval. Use the Profiler
parameter statistics_level (same parameter name and permissible values as with the Oracle DBMS) for this purpose.
Execution plans are retrieved along with additional information such as query block names, peeked bind variables, outline data, and
predicate information using the package DBMS_XPLAN. Bind variable peeking is a feature of the CBO that is enabled by default.
Outline data contain hints that force a particular execution plan. The hints found in the outline data section are a good starting point
for modifying a plan with different hints.
An execution plan may be the result of a SQL Profile are a Stored Outline. This information is not included in SQL trace files.
However the Profiler report provides this information.

Correlation with V$SQL
----------------------

Note: The result is split into two rows where each row is identified by the child cursor number.
Resource usage is since instance startup (not interval-based).

CHILD_NUMBER OLD_HASH_VALUE FORCE_MATCHING_SIGNATURE PLAN_HASH_VALUE OPTIMIZER_ENV_HASH_VALUE LAST_ACTIVE_TIME   SQL_PROFILE OUTLINE_CATEGORY OUTLINE_TYPE 
____________ ______________ ________________________ _______________ ________________________ __________________ ___________ ________________ ____________ 
           0     3803592478      3138049466602010507      2108007948               3522870812 06-Jan-10 18:39:21                                           

CHILD_NUMBER CPU Time (s) Elapsed (s) App. Wait Time (s) Conc. Wait Time (s) Cluster Wait Time (s) User I/O Wait Time (s) PL/SQL Exec. Time (s) Java Exec. Time (s) EXECUTIONS SORTS PARSE_CALLS OPTIMIZER_COST 
____________ ____________ ___________ __________________ ___________________ _____________________ ______________________ _____________________ ___________________ __________ _____ ___________ ______________ 
           0 15.825       54.881      0                  3.715               0                     28.803                 0                     0                         2066  2066          15            235 

Correlation with V$SQL_PLAN_STATISTICS_ALL using DBMS_XPLAN.DISPLAY_CURSOR
--------------------------------------------------------------------------

Execution Plan for Child Cursor 0
.................................

SQL_ID  dw2zgaapax1sg, child number 0
-------------------------------------
SELECT PRODUCTS.PRODUCT_ID, PRODUCT_NAME, PRODUCT_DESCRIPTION, CATEGORY_ID, WEIGHT_CLASS, WARRANTY_PERIOD, SUPPLIER_ID, 
PRODUCT_STATUS, LIST_PRICE, MIN_PRICE, CATALOG_URL, QUANTITY_ON_HAND FROM PRODUCTS, INVENTORIES WHERE PRODUCTS.CATEGORY_ID = :B1 
AND INVENTORIES.PRODUCT_ID = PRODUCTS.PRODUCT_ID ORDER BY INVENTORIES.WAREHOUSE_ID
 
Plan hash value: 2108007948
 
-------------------------------------------------------------------------------------------------------------------------------------------
| Id  | Operation                      | Name                 | E-Rows |E-Bytes|E-Temp | Cost (%CPU)| E-Time   |  OMem |  1Mem | Used-Mem |
-------------------------------------------------------------------------------------------------------------------------------------------
|   1 |  SORT ORDER BY                 |                      |    580 |   288K|   632K|   235   (1)| 00:00:03 |   267K|   267K|  237K (0)|
|*  2 |   HASH JOIN                    |                      |    580 |   288K|       |   169   (1)| 00:00:03 |   694K|   694K| 1156K (0)|
|   3 |    NESTED LOOPS OUTER          |                      |     29 | 14500 |       |     4   (0)| 00:00:01 |       |       |          |
|*  4 |     TABLE ACCESS FULL          | PRODUCT_INFORMATION  |     29 |  6351 |       |     4   (0)| 00:00:01 |       |       |          |
|   5 |     TABLE ACCESS BY INDEX ROWID| PRODUCT_DESCRIPTIONS |      1 |   281 |       |     0   (0)|          |       |       |          |
|*  6 |      INDEX UNIQUE SCAN         | PRD_DESC_PK          |      1 |       |       |     0   (0)|          |       |       |          |



AS-SYSTEME GmbH 43

|   7 |    TABLE ACCESS FULL           | INVENTORIES          |   5760 | 57600 |       |   164   (0)| 00:00:02 |       |       |          |
-------------------------------------------------------------------------------------------------------------------------------------------
 
Query Block Name / Object Alias (identified by operation id):
-------------------------------------------------------------
 
   1 - SEL$F5BB74E1
   4 - SEL$F5BB74E1 / I@SEL$2
   5 - SEL$F5BB74E1 / D@SEL$2
   6 - SEL$F5BB74E1 / D@SEL$2
   7 - SEL$F5BB74E1 / INVENTORIES@SEL$1
 
Outline Data
-------------
 
  /*+
      BEGIN_OUTLINE_DATA
      IGNORE_OPTIM_EMBEDDED_HINTS
      OPTIMIZER_FEATURES_ENABLE('10.2.0.3')
      ALL_ROWS
      OUTLINE_LEAF(@"SEL$F5BB74E1")
      MERGE(@"SEL$2")
      OUTLINE(@"SEL$1")
      OUTLINE(@"SEL$2")
      FULL(@"SEL$F5BB74E1" "I"@"SEL$2")
      INDEX_RS_ASC(@"SEL$F5BB74E1" "D"@"SEL$2" ("PRODUCT_DESCRIPTIONS"."PRODUCT_ID" "PRODUCT_DESCRIPTIONS"."LANGUAGE_ID"))
      FULL(@"SEL$F5BB74E1" "INVENTORIES"@"SEL$1")
      LEADING(@"SEL$F5BB74E1" "I"@"SEL$2" "D"@"SEL$2" "INVENTORIES"@"SEL$1")
      USE_NL(@"SEL$F5BB74E1" "D"@"SEL$2")
      USE_HASH(@"SEL$F5BB74E1" "INVENTORIES"@"SEL$1")
      END_OUTLINE_DATA
  */
 
Peeked Binds (identified by position):
--------------------------------------
 
   1 - (NUMBER): 9
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   2 - access("INVENTORIES"."PRODUCT_ID"="I"."PRODUCT_ID")
   4 - filter("I"."CATEGORY_ID"=:B1)
   6 - access("D"."PRODUCT_ID"="I"."PRODUCT_ID" AND "D"."LANGUAGE_ID"=SYS_CONTEXT('USERENV','LANG'))
 
Note
-----
   - Warning: basic plan statistics not available. These are only collected when:
       * hint 'gather_plan_statistics' is used for the statement or
       * parameter 'statistics_level' is set to 'ALL', at session or system level

Execution Plans Captured by Statspack
If the Statspack repository contains one or more execution plans for a traced statement, then these are included in the Profiler report
given that the Profiler parameter use_statspack has the value true. In case additional information on a statement from the Statspack
repository is desired, it can be obtained by using the Statspack script sprepsql.sql. The old hash value and the Statspack snapshot ID
indicated in the report are required as input to the script sprepsql.sql.
Old hash value: 3803592478
SQL ID: dw2zgaapax1sg

Execution plan with plan hash value 2108007948 (last active 15-Nov-09 19:47:59)
Optimization: ALL_ROWS
Cost: 235
Statspack snapshot 505 of instance 1

ID PID Operation                       Object                   Object ID Rows  Bytes Cost I/O Cost Temp. Space 
__ ___ _______________________________ ________________________ _________ ____ ______ ____ ________ ___________ 
 0     SELECT STATEMENT                                                                235                      
 1   0  SORT ORDER BY                                                      580 295800  235      233      648000 
 2   1   HASH JOIN                                                         580 295800  169      168             
 3   2    NESTED LOOPS OUTER                                                29  14500    4        4             
 4   3     TABLE ACCESS FULL           SOE.PRODUCT_INFORMATION      60741   29   6351    4        4             
 5   3     TABLE ACCESS BY INDEX ROWID SOE.PRODUCT_DESCRIPTIONS     60743    1    281    0        0             
 6   5      INDEX UNIQUE SCAN          SOE.PRD_DESC_PK              60770    1           0        0             
 7   2    TABLE ACCESS FULL            SOE.INVENTORIES              60740 5760  57600  164      164    

Statement Execution Captured by AWR
If the Active Workload Repository contains one or more execution plans for a traced statement, then these are included in the Pro-
filer report given that the Profiler parameter use_awr has the value true. In case additional information on a statement from the
AWR is desired, it can be obtained by using the AWR script awrsqrpt.sql. The begin snapshot ID and the SQL ID are required as
input to the script awrsqrpt.sql. 

SNAP_ID       DBID INSTANCE_NUMBER PLAN_HASH_VALUE OPTIMIZER_COST OPTIMIZER_MODE OPTIMIZER_ENV_HASH_VALUE SQL_PROFILE Ela. per EXEC CPU per EXEC Buffer Gets per EXEC 
_______ __________ _______________ _______________ ______________ ______________ ________________________ ___________ _____________ ____________ ____________________ 
   2492 2870266532               1      2108007948            235 ALL_ROWS                     3522870812             .019332       .007719      742.2                

AWR execution plan with plan hash value 2108007948 for SQL ID dw2zgaapax1sg
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SQL_ID dw2zgaapax1sg

SELECT PRODUCTS.PRODUCT_ID, PRODUCT_NAME, PRODUCT_DESCRIPTION, CATEGORY_ID, WEIGHT_CLASS,

AS-SYSTEME GmbH 44

WARRANTY_PERIOD, SUPPLIER_ID, PRODUCT_STATUS, LIST_PRICE, MIN_PRICE, CATALOG_URL, QUANTITY_ON_HAND FROM
PRODUCTS, INVENTORIES WHERE PRODUCTS.CATEGORY_ID = :B1 AND INVENTORIES.PRODUCT_ID = PRODUCTS.PRODUCT_ID
ORDER BY INVENTORIES.WAREHOUSE_ID

Plan hash value: 2108007948

--
| Id | Operation | Name | E-Rows |E-Bytes|E-Temp | Cost (%CPU)| E-Time |
--
0	SELECT STATEMENT					235 (100)	
1	SORT ORDER BY		580	288K	632K	235 (1)	00:00:03
2	HASH JOIN		580	288K		169 (1)	00:00:03
3	NESTED LOOPS OUTER		29	14500		4 (0)	00:00:01
4	TABLE ACCESS FULL	PRODUCT_INFORMATION	29	6351		4 (0)	00:00:01
5	TABLE ACCESS BY INDEX ROWID	PRODUCT_DESCRIPTIONS	1	281		0 (0)	
6	INDEX UNIQUE SCAN	PRD_DESC_PK	1			0 (0)	
7	TABLE ACCESS FULL	INVENTORIES	5760	57600		164 (0)	00:00:02
--

Query Block Name / Object Alias (identified by operation id):

 1 - SEL$F5BB74E1
 4 - SEL$F5BB74E1 / I@SEL$2
 5 - SEL$F5BB74E1 / D@SEL$2
 6 - SEL$F5BB74E1 / D@SEL$2
 7 - SEL$F5BB74E1 / INVENTORIES@SEL$1

Outline Data

 /*+
 BEGIN_OUTLINE_DATA
 IGNORE_OPTIM_EMBEDDED_HINTS
 OPTIMIZER_FEATURES_ENABLE('10.2.0.3')
 ALL_ROWS
 OUTLINE_LEAF(@"SEL$F5BB74E1")
 MERGE(@"SEL$2")
 OUTLINE(@"SEL$1")
 OUTLINE(@"SEL$2")
 FULL(@"SEL$F5BB74E1" "I"@"SEL$2")
 INDEX_RS_ASC(@"SEL$F5BB74E1" "D"@"SEL$2" ("PRODUCT_DESCRIPTIONS"."PRODUCT_ID"
 "PRODUCT_DESCRIPTIONS"."LANGUAGE_ID"))
 FULL(@"SEL$F5BB74E1" "INVENTORIES"@"SEL$1")
 LEADING(@"SEL$F5BB74E1" "I"@"SEL$2" "D"@"SEL$2" "INVENTORIES"@"SEL$1")
 USE_NL(@"SEL$F5BB74E1" "D"@"SEL$2")
 USE_HASH(@"SEL$F5BB74E1" "INVENTORIES"@"SEL$1")
 END_OUTLINE_DATA
 */

Peeked Binds (identified by position):

 1 - :B1 (NUMBER): 1

Note

 - Warning: basic plan statistics not available. These are only collected when:
 * hint 'gather_plan_statistics' is used for the statement or
 * parameter 'statistics_level' is set to 'ALL', at session or system level

Optimizer Environments
An optimizer environment is a set of CBO parameters with certain values. An optimizer environment hash value is calculated for
each optimizer environment. The optimizer environment hash value offers an easy way to tell whether different optimizer environ-
ments were used by the CBO when optimizing a set of statements. Since optimizer parameters may be changed with the command
ALTER SESSION it is feasible for an application to change optimizer parameters. Parameters may also have changed with ALTER
SYSTEM. Changes with ALTER SYSTEM are picked up by sessions that connect after the parameter change.
This section contains cost based optimizer (CBO) parameter settings pertaining to
execution plans used by the SQL statements in the trace file. An optimizer environment
is a distinct set of parameters that govern the operation of the optimizer.
An optimizer environment hash value (V$SQL.OPTIMIZER_ENV_HASH_VALUE) identifies each unique set
of parameter values.

The optimizer used 4 distinct optimizer environments.

Optimizer Environment with Hash Value 779777996
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This optimizer environment was used when generating an execution plan for the cursor 
identified by SQL ID bsa0wjtftg3uw and child number 0.



AS-SYSTEME GmbH 45

Row# Name                          Value     Default 
____ _____________________________ _________ _______ 
   1 active_instance_count         1         YES     
   2 bitmap_merge_area_size        1048576   YES     
   3 cpu_count                     2         YES     
   4 cursor_sharing                exact     YES     
   5 hash_area_size                131072    YES     
   6 optimizer_dynamic_sampling    2         YES     
   7 optimizer_features_enable     10.2.0.3  YES     
   8 optimizer_index_caching       0         YES     
   9 optimizer_index_cost_adj      100       YES     
  10 optimizer_mode                choose    NO      
  11 optimizer_secure_view_merging true      YES     
  12 parallel_ddl_mode             enabled   YES     
  13 parallel_dml_mode             disabled  YES     
  14 parallel_execution_enabled    true      YES     
  15 parallel_query_mode           enabled   YES     
  16 parallel_threads_per_cpu      2         YES     
  17 pga_aggregate_target          262144 KB YES     
  18 query_rewrite_enabled         true      YES     
  19 query_rewrite_integrity       enforced  YES     
  20 skip_unusable_indexes         true      YES     
  21 sort_area_retained_size       0         YES     
  22 sort_area_size                65536     YES     
  23 star_transformation_enabled   false     YES     
  24 statistics_level              typical   YES     
  25 workarea_size_policy          auto      YES     

Buffer Cache Contents
This section shows the contents of the buffer cache. Segments that are smaller than the value of the MERITS profiler parameter
cached_table_threshold_mb are exempt from the report. The overall load on the disk subsystem may be reduced significantly if
separate buffer pools (KEEP, RECYCLE, DB_nK_CACHE_SIZE) are used for large tables or indexes that cause many physical
reads. Consult the Statspack level 7 report section on 'Segments by Physical Reads' to identify segments that cause many physical
reads and are hence insufficiently cached.

Owner & Name                  Object Type Block Size (KB) Buffer Pool Cached (MB) Cached (%) Cached (Blocks) Segment Size (MB) Segment Size (Blocks) 
_____________________________ ___________ _______________ ___________ ___________ __________ _______________ _________________ _____________________ 
SYS.C_OBJ#                    CLUSTER                   8 DEFAULT             7.1      88.96             911                 8                  1024 
SYS.OBJ$                      TABLE                     8 DEFAULT               5      83.98             645                 6                   768 
PERFSTAT.STATS$SQL_PLAN_USAGE TABLE                     8 DEFAULT             3.9      78.59             503                 5                   640 
SYS.C_FILE#_BLOCK#            CLUSTER                   8 DEFAULT             1.2      59.77             153                 2                   256 

Data Dictionary Correlation
This section contains structural information and cost based optimizer (CBO) statistics pertaining to the tables and indexes refer-
enced by an input trace file. The data is extracted from dictionary views such as DBA_TABLES, DBA_TAB_COLUMNS and
DBA_INDEXES.

Structure, Indexes, and Statistics for Table HR.DEPARTMENTS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Table Overview

Owner & Name Avg. Row Length Rows (Statistics) Rows (Est. Actual) Blocks (Stats) Blocks (Segment) Empty Blocks Average Space Chain Count Global Stats User Stats Sample Size Last Analyze
________________ _______________ _________________ __________________ ______________ ________________ ____________ _____________ ___________ ____________ __________ ___________

HR . DEPARTMENTS 20 27 38 5 8 0 0 0 YES NO 27 21-May-09 18:50:15

Table Size and Estimated Space Efficiency
...

Tablespace Block Size Table Size (MB) Est. Space Efficiency Buffer Pool Degree Cluster IOT Type IOT Name
__________ __________ _______________ _____________________ ___________ ______ _______ ________ ________
USERS 8 KB .1 1.5% DEFAULT 1

Storage Parameters and Modifications
....................................

PCTFREE PCTUSED INITRANS Monitoring Modified (%) INSERT UPDATE DELETE
_______ _______ ________ __________ ____________ ______ ______ ______
 10 1 YES

Column Statistics
.................

Column Name Data Type Distinct Values Avg. Length Density Buckets NULLs Global Stats User Stats Sample Size Last Analyze
_______________ _____________________ _______________ ___________ ________ _______ _____ ____________ __________ ___________ __________________
DEPARTMENT_ID NUMBER(4) NOT NULL 27 4 0.037037 1 0 YES NO 27 21-May-09 18:50:15
DEPARTMENT_NAME VARCHAR2(30) NOT NULL 27 12 0.037037 1 0 YES NO 27 21-May-09 18:50:15
MANAGER_ID NUMBER(6) 11 3 0.090909 1 16 YES NO 11 21-May-09 18:50:15
LOCATION_ID NUMBER(4) 7 3 0.018519 7 0 YES NO 27 21-May-09 18:50:15

Index Overview

AS-SYSTEME GmbH 46

Index Owner Index Name Index Type Partitioned Created Last DDL Time Last Analyze Status Sample Size Tablespace Buffer Pool Degree
___________ ________________ __________ ___________ __________________ __________________ __________________ ______ ___________ __________ ___________ ______
HR DEPT_ID_PK NORMAL NO 29-Jan-09 00:40:34 29-Jan-09 00:40:34 21-May-09 18:50:15 VALID 27 USERS DEFAULT 1
HR DEPT_LOCATION_IX NORMAL NO 29-Jan-09 00:40:35 29-Jan-09 00:40:35 21-May-09 18:50:15 VALID 27 USERS DEFAULT 1

Index Statistics
................

Index Owner Index Name Index Type Unique B-Tree Level Leaf Blocks Distinct Keys Rows Avg. Leaf Blocks per Key Avg. Data Blocks per Key Clustering
Factor Global Stats User Stats
___________ ________________ __________ ______ ____________ ___________ _____________ ____ ________________________ ________________________
_________________ ____________ __________
HR DEPT_ID_PK NORMAL YES 0 1 27 27 1 1 1
YES NO
HR DEPT_LOCATION_IX NORMAL NO 0 1 7 27 1 1 1
YES NO

Indexed Columns
...............

Index Owner Index Name Column Name Position Data Type
___________ ________________ _____________ ________ __________________
HR DEPT_ID_PK DEPARTMENT_ID 1 NUMBER(4) NOT NULL
HR DEPT_LOCATION_IX LOCATION_ID 1 NUMBER(4)

MERITS Profiler Parameter Settings
The final section of the Profiler report documents the parameter settings that were in effect for the report. The next few lines show
an excerpt from a section on parameter settings.
MERITS Profiler Parameter Settings

awr_flush_level=off
cached_table_threshold_mb=1
date_format=%1$td-%1$tb-%1$ty %1$tT
db_directory=
db_release=

Logging
The MERITS Profiler’s logging subsystem is based on Apache log4j (http://logging.apache.org). Log4j supports seven logging lev-
els. They are TRACE, DEBUG, INFO, WARN, ERROR, FATAL, and OFF in diminishing order of verbosity.
The Profiler consists of five major building blocks. The profiler consists of components responsible for accounting, calculation
(calc), parsing (parser), near real-time access to the Oracle DBMS (rt), and the profiler (profiler) itself. The logging level may be
configured individually for each building block. The default logging levels are defined in the properties file <MPROF_HOME>/
conf/profiler_log4j.properties. To customize logging levels, copy the file profiler_log4j.properties to a directory outside of
<MPROF_HOME> and edit the last five lines (reproduced below) to suit your needs.
log4j.logger.accounting=INFO
log4j.logger.calc=INFO
log4j.logger.parser=INFO
log4j.logger.profiler=INFO
log4j.logger.rt=INFO

Additionally you need to set the Profiler parameter log4j_config_url (see page 24) such that the Profiler will read the customized
file instead of the default file in <MPROF_HOME>/conf.
The parser has an interesting feature that is useful for troubleshooting situations where you need to know at what time SQL or PL/
SQL statements in a trace file were executed. At logging level DEBUG, the parser writes each trace file entry that was parsed suc-
cessfully to the log file using a “normalized” format. The format consists of the line number of the entry in a trace file, the character
“+” that signifies a successful parse operation, the entry itself including cursor number and hash value, and a human readable time-
stamp for all trace file lines that contain the parameter tim. The tim value, which has microsecond resolution, is converted to a
human readable timestamp with millisecond resolution based on the previous date and time information recorded in the trace file.
The next code section shows an example:
DEBUG parser: 36+PARSING IN CURSOR #1 hv=2228079888 dep=0 len=87 uid=61 oct=2 lid=61
ad='6cad992c' sqlid=null tim=789991639097 20-Nov-07 15:39:38.552
DEBUG parser: 39+ INSERT INTO customer(name, phone) VALUES (:name, :phone)
 RETURNING id INTO :id

DEBUG parser: 40+PARSE #1 hv=2228079888 dep=0 c=0 e=84 p=0 cr=0 cu=0 mis=0 r=0 og=1 plh=null
tim=789991639091 20-Nov-07 15:39:38.552

Note that the parameter hv is present in the normalized parse call from the log file excerpt above. SQL trace files provide hv only
with PARSING IN CURSOR entries. The human readable timestamp “20-Nov-07 15:39:38.552” is derived from the value of the
tim parameter on the same line.

AS-SYSTEME GmbH 47

A minus sign is used to signify trace file entries that failed to parse without error. Here is an example:
ERROR parser: 237613- =0 =0 obj#=0 tim=113720081170

Here, the integer 237613 is the line number in a trace file. The minus sign after the line number indicates a parse error. The error
above occurred due to a bug in the DBMS server that is the cause for WAIT entries with missing wait parameter names (“=0” is
written instead of <wait parameter name>=0).

Releases and Features
New Features of Release 0.9.11
Release 0.9.11 has the following new features:

• Parsing of row sources in STAT entries has been greatly enhances such that new row sources that are not explicitly sup-
ported by the lexer no longer cause a failure to parse the metrics at the end of a STAT entry. Note that each release of the
Oracle DBMS may introduce new row sources and/or options such as “HASH JOIN FULL OUTER”.

• Microsecond resolution for “Avg. SBR Time” and “Avg. MBR Time” (average single block read time and average multi-
block read time).

• Support for ERROR entries and a counter that is used to report the number of ERROR entries (Oracle DBMS server
ORA-nnnnn errors) in a trace file.

New Features of Release 1.0.0
Release 1.0.0 supports Oracle Version 11.2.0.2 SQL trace files with 64-bit unsigned integers as cursor numbers. Previous releases
do not support 64-bit unsigned integers as cursor numbers. Release 1.0.0 is also the first release that limits the size of trace files
processed. The maximum trace file size is encoded in a license file. License files issued for previous versions of the Profiler are not
compatible with release 1.0.0.
The value of the parameter think_time_threshold_ms has been reduced from 5 to 4 since today’s networks easily allow for round-
trip times of less than 4 ms. Furthermore 4 ms is a histogram bucket boundary such that the wait event histogram for “SQL*Net
message from client” is easier to interpret.
New features:

• Accounting by module and action
• LOB operation accounting
• Support for CLOSE database call (parser and accounting)

New Features of Release 1.1.0
The parser now supports the row source INDEX FULL SCAN (MIN/MAX) in execution plans captured by SQL trace.

New Features of Release 1.2.0
• The columns HIDDEN_COLUMN and VIRTUAL_COLUMN from the view DBA_TAB_COLS have been added to the

section entitled “Column Statistics” to better support function based indexes.
• The section “DBMS_STATS Default Values” has been added to MERITS Profiler reports in real-time mode. The default

values used by DBMS_STATS affect the quality of segment statistics which in turn have a very significant impact upon
execution plans chosen by the cost based optimizer (CBO).

• The initialization parameters db_file_multiblock_read_count and instance_name are now included in the section entitled
“Initialization Parameters” even if they have default values. The parameter db_file_multiblock_read_count affects the
cost based optimizer (CBO). Values higher than 16 rarely have a measureable benefit. Nonetheless in Oracle10g Oracle
Corp. increased the default to 128 on many platforms given that db_block_size=8192. The default value of the parameter
db_file_multiblock_read_count is set such that db_file_multiblock_read_count * db_block_size = 10485876 (1 MB).

• Modules and actions are now ranked by delta tim spent inside a module and action in the report section “Results by Mod-
ule and Action”. Earlier releases used the accounted for elapsed time to rank modules and actions. Using delta tim pro-
vides more accurate results when the Oracle DBMS kernel performs operations that aren’t sufficiently instrumented.

• The row source operation "DOMAIN INDEX" now parses successfully.
• The MERITS Profiler parameter setting cached_table_threshold_mb=-1 disables the real-time report section entitled

"Buffer Cache Contents".

Bug Fixes in Release 1.2.0
• Trace files that contained a row source with obj# > 231-1 caused an integer overflow. This could happen with GV$ or V$

views.
• Values larger than 231-1 in the row source metric fields card or size caused an integer overflow.
• The release information in Standard Edition trace files could not be extracted.

AS-SYSTEME GmbH 48

• LOB and LOB index segments were missing in the section entitled "Buffer Cache Contents". To implement the fix, a
GRANT on the dictionary base table OBJ$ has been added in the file profiler_role.sql. If you use the role created by this
script, then you need to execute the script again to make sure the new release does not cause ORA-00942: table or view
does not exist.

Upgrading
This section contains instructions for upgrades. If your old release is older than a certain newer release, then you need to follow the
instructions for all releases higher than your old release up to and including the release you are upgrading to. For example if your
old release is 0.9.3 and your new release is 0.9.5, you need to follow the instructions for release 0.9.5 (there are no upgrade tasks for
release 0.9.4).

Upgrading to Release 0.9.5
The startup scripts (mprof/mprof.bat) in the directory mprof/bin have changed. In prior releases the startup scripts themselves had
to be modified to launch the Profiler. Starting with release 0.9.5 the startup scripts expect the environment variables
MPROF_HOME and MPROF_JAVA_HOME to be set before a startup script can be invoked successfully. It is recommended to
copy the customized settings of MPROF_HOME and JAVA_HOME from an older release and to set the variables MPROF_HOME
and MPROF_JAVA_HOME as environment variables using the already established values.

Upgrading to Release 1.0.0
To upgrade an existing MPROF_HOME simply overwrite all files using unzip -o or a similar approach. Release 1.0.0 is packaged
as zip file mprof-1.0.0.zip.

Upgrading to Release 1.1.0
To upgrade an existing MPROF_HOME simply overwrite all files using unzip -o or a similar approach. Release 1.1.0 is packaged
as zip file mprof-1.1.0.zip.

Upgrading to Release 1.2.0
A GRANT on the view DBA_TAB_COLS has been added in the file profiler_role.sql. If you use the role created by this script,
then you need to execute the script again to make sure the new release does not cause ORA-00942: table or view does not exist
while trying to access the view DBA_TAB_COLS.

Limitations
This section describes some limitations of the MERITS Profiler.

Partitioning Option
Partitioned tables and indexes are not supported in real-time mode. Support for Partitioning Option is under development.

Multiple Sessions per Trace File
The MERITS Profiler currently has no support for correctly handling cursors from multiple sessions in a single file. This applies to
trace files from shared server processes as well as concatenated trace files created manually or using TRCSESS. Such files may be
processed but results will likely be inaccurate. As a workaround, use TRCSESS to create one or more trace files that contain only a
single session, then process those trace files with the MERITS Profiler.
This limitation is scheduled to be removed within the first quarter of 2010.

Parallel Execution
The MERITS Profiler cannot detect parallel execution of a SQL statement. There is currently no feature for accurately combining
the SQL trace file of the parallel execution coordinator process and two or more trace files of parallel execution slaves controlled
by the coordinator into a single report.

LOB Statsistics at Module and Action Level
Accounting by module and action ignores LOB trace file entries. LOB statistics are only available at trace file level, not at module
and action level.

Additional Information
Please consider the following books for additional information on Oracle DBMS performance optimization.
Antognini, Christian, Troubleshooting Oracle Performance, Apress, 2008, http://www.apress.com
Debes, Norbert, Secrets of the Oracle Database, Apress, 2009, http://www.apress.com
Lewis, Jonathan, Cost–Based Oracle Fundamentals, Apress, 2005, http://www.apress.com
Millsap, Cary; Holt, Jeff, Optimizing Oracle Performance, O’Reilly, 2003, http://www.oreilly.com

AS-SYSTEME GmbH 44

A
Active Session History 39
Active Workload Repository 39
application server 7
ARRAYSIZE 36
awr_flush_level 19

B
bind variables 38
buffer busy wait 37
buffer cache contents 44

C
cached_table_threshold_mb 19
connection pool 7
cpu_count 40

D
data dictionary correlation 44
date_format 20
db_directory 20
db_encrypted_passwd 20
db_release 20
db_user 21
DBMS_MONITOR 6
DBMS_SESSION 7
DBMS_XPLAN 41
delta tim 31, 33, 38

E
elapsed time 32
encrypt 21
execution plan 36

H
help 21
histogram 36

I
installation 8
instrumentation 6
interactive 21
IPC latency wait time 35

J
jdbc_url 22

L
lic_db_encrypted_passwd 22
lic_db_user 22
lic_listener_port 22
lic_listener_service 23
license file 9
license server 10

licensing 5
log4j_pattern_layout 23
logfile 23

M
max_bind_sections 24
max_idle_time 24
max_statements 24
mod_act_max_statements 24
MPROF_HOME 9
MPROF_JAVA_HOME 8
MPROF_JDBC_DRIVER 9
MPROF_PROPERTIES 9, 16, 19
multi-block read 37

O
object_statistics 25
OCIAttrSet 6
offline mode 13, 16
optimizer environment 43
optimizer goal 35
Oracle Call Interface

and instrumentation 6
output_directory 25

P
password encryption 11
properties 25

R
real_time 25
real-time mode 12
recursive call depth 32
recursive descendants 36
recursive statement 36
report structure 29
report_name 26
resource profile 31
row prefetch histogram 36

S
session 26
software requirements 5
sp_snap_level 26
sql_trace_file 27
statistics_level 28
Statspack 42
system statistics 40

T
think time 14
think_time_threshold_ms 28
three tier environment 7
top statements 33

Index

AS-SYSTEME GmbH 45

trace_file_directory 28
TRCSESS 6
U
use_awr 29
use_statspack 29

V
V$SESSION

and client identifier 7
W
wait event histograms 39
wait time 31

X
XCTEND 31

